
PROCEEDINGS OF THE IRVINE WORKSHOP ON ALTERNATIVES FOR THE ENVI-ETC(U)
1978 T A STANDISH DAA29-78-M-0219

UNCLASSIFIED UCI-ICS-78-83 Pa.

A-- aEE~hE

1111122am 1 0 1 &2~ lI~

'40 11112-

IIIIIL251.41111.6

MICROCOPY RESOLUTION TEST CHART

Proceedings of the

IRVINE WORKSHOP
on Alternatives for

the Environment, Certification, and Control

of the

DOD Common High Order Language

0

o June 20-2Z 1978
University of California at Irvine

DTIC.
ELECTE
SEP 10 198

CO-SPONSORED BY THE A

U.S. ARMY, U.S. NAVY, U.S. AIR FORCE

AND THE

IRVINE COMPUTER SCIENCE DEPARTMENT

"I." Approved for pubflic s
L, Dtatribution Unlmid

8016 5 0il

WWAD INSTRUCTIONiS

S. ERORMGORIZAI AEANDATON AEESRCOPEOFR
Computer ScieSSIe DeprOen a. ARsewAS- COA TO UNER

Irvine,0 CalfoViaR271

EEARCH TRINGE PRKE YPRS.O ONUE OTEORAGES

UOR THECROLINA=T 27709ATON 358 -70i_ EC7~"

IS DST ASIINStaTEMEN DAAG29-7..et

This docuentitrve fo8pbicrlesadsae

IS. SPEOMINGTA NIZONT AEADESREi.PORA LMNPRJC.TS

Com.uKEY ODS cin e ear tm.ie 7" AREA G, WORKU* UNI NUMBERSg

athIriecmuofteUniversity of California. Toit disvusse
Iinue, ealierncia 92 gae7tnad1ain7ehnlg orlnug

prorain lanuaY RSACulturIE, reureet anlyis system dUEsin progr21 197

PD ~1473 E@'iO" P luy 555 OUOLET UNCLASSIFIED/LOg' 9 4d
*~rN~V CLSSIPCATIW OP TI PA WGE f DM8Imi

Proceedings of the

IRVINE WORKSHOP
on Alternatives for

the Environment, Certification, and Control

of the

DOD Common High Order Language

June 20-22,1978
University of California at Irvine

() IO

CO-SPONSORED BY THE A~cession For

U.S. ARMY, U.S. NAVY, U.S. AIR FORCE r" -1. w: i

AND THE J . .tioin

IRVINE COMPUTER SCIENCE DEPARTMENT
i~f

I,.1nlj t.yCedeS

iv i I d loz "
D ~ ~ -. ,al

Source of Support and Notices

The Workshop and the publication of the Workshop Proceedings
were supported by the United States Army under contract DAAG29-78-M-0219.

The views, opinions, and/or findings contained in this report
are those of the author(s) and should not be construed as an official
Department of the Army position, policy, or decision, unless so
designated by other documentation.

Note to Reader Added in Proof

Throughout the transcripts, the Workshop participants used
the name "DOD1" to refer informally to the DoD Common High Order
Language. As noted by Col. Whitaker in his Opening Session Address,
"DODI" was not the name of the language at the time the Workshop
was held, nor has it ever been the nwne of the language. Since
the end of the Workshop, the name Ada has been chosen as the name
for the common language. This honors Ada Agusta, the Countess of
Lovelace, the daughter of the poet Lord Byron, and Babbage 's
"programmer." For reasons of historical accuracy, the use of
the working title "DODi" has been retained in the transcripts. The
reader should be aware, however, that the participants were informed
by Col. Whitaker and were aware that "DODi" was not the official name,
and that they used "DODi" as a term of convenience only in the
absence of any other suitable working designation.

COPYRIGHT ® 1978, THOMAS A. STANDISH, ALL RIGHTS RESERVED
EXCEPT AS FOLLOWS:

This document may be reproduced for any purpose of
the United States Government.

L.

Table of Contents

page

Acknowledgments

Introduction 1

Opening Session 4

Session 1A: Experience in Language Standardization IC

Session 2A: Technology For Language Specification 7S

Session 3A: Verification Technology, Present & Future 38

Session 4A: Technology for Compiler Validation S?

Session SA: Compile Tine Tools 59

Session "A: Supporting a Flourishing Language Culture 73

Session IB: Requirements Analysis 99

Session 2B: System Design i

Session 3B: Program Documentation 116

Session 4B: Program Development Systems 125

Session 5B: Program Maintenance 139

Session 6B: Test and Measurement 149

Session IC: Training and Education 158

Position Papers

Position Paper --- Richard W. Taylor

Position Paper --- John Rurgey, John Machado,
John Perry, and Patricia Santoni

Levels of Program ebugging --- Robert Balzer

Maintenance --- Robert Balzer

Toward Self-Documenting Programs --- Edward A. Taft

Ac knowledgments

Many fine people deserve credit for contributing to the
success of the Workshop and to the preparation of the
Proceedings.

Most deserving of praise are Mary Kay Clarke, Secretary
to the Chair, and Phyllis Siegel, Administrative Assistant,
both of the Irvine Computer Science Department. Mary Kay
and Phyllis arranged the Workshop facilities, planned the
meals and refreshments, handled mailinos and travel
arrangements for participants, handlee finances, and spent
the summer typing transcripts. Their skill and devotion are
the principal factors that contributed to the success of the
entire undertaking.

Katie Heap and Randi Steinman of the TIC Trvine
Conference Office were most helpful in arranqinq on-campus
lodging, providing audio-visual aids, and reserving Workshop
conference rooms. Alexander Hu, Dennis Kibler, Craig
Taylor, and David Smith helped run the audio-visual
equipment during the working sessions and were responsible
for taping the conversations and presentations.

A number of good people in and surrounding the military
services were marvelously supportive and helpful in
arranging financial support for the Workshop and in planning
the Workshop Agenda. These include Warren Loper, Sam
DiNitto, Jim Wagner, Russ Eyres, Dave Fisher, Bill Whitaker,
and Jimmy Suttle.

With regard to the Proceeq4iq, we should have known we
were in for trouble when we were unsuccessful in hiring
courtroom stenographers to produce the transcripts of the
Workshop sessions. That the stenographers wanted $75 per
hour was no problem --- we had long since resigned ourselves
to the notion that anybody connected with the legal
profession would charge totally outrageous fees ane we were
prepared to pay through the nose in the fine company of
others of our suffering countrymen. The problem we could
not surmount was that the stenographers flatly refused to
transcribe technical material (thoujgh how it is that legAl
jargon is less technical than that of computer science
completely escapes us). Faced with their refusal, we asked
"Did they know something we didn't know?"

We had foreseen that there would be problems with
non-technical people trying to transcribe technical jargon,
and we were prepared to see "Wlrth's Euler" come out as
'worth's oiler' and to see "BNF" come out as "B&F' in the
draft transcripts. These minor irritants we thought we
could expunge with a few magic TECO macros once the
transcripts were captured in the computer. Alas, the
computer went down in mid-summer to get an enlarged memory,
and we badly underestimated the magnitude and difficulty of
the task. Furthermore, our recording technique was less
than flawless.

- ii -

It took all summer to get the transcripts typed. Mary
Kay Clarke, Tammy Feldman, Shirley Rasm ussen, and Alexander
Hu stuck with it to the bitter end. Tammy Feldman's
extraordinary intelligence and eevotion led to very high
quality draft transcripts and her quiet competence deserves
the warmest praise. We repeatedly hired outside help to
speed up the process, hut they repeatedly quit after a week
of our special brand of secretarial torture.

By Sept. 30, we had a Four inch stack of draft
transcripts completed, and we mailed out a four foot stack
of them to the Workshop participants for editing. We got
back three feet of edited transcripts by the end of October.

Now it was time for the suffering to penetrate other
layers of our Department as we attempted to boil down each
session into eight to twelve pages of the best material.
This called for help from technically qualified people who
could judge relevance and interest, who could compress
detail, and who could turn informal, run-on conversation
into legible English. While some semantic distortion is
inevitable in this process, the crew that we had working on
it did a splendid job, and we believe we have minimized the
semantic distortion that could have resulted had less
capable people been involved. In this phase, Jim Meehan of
the Irvine Computer Science faculty, and Irvine qraduate
students Paul Mockapetris, Ashok Viswanathan, David Smith,
Essam Hosny, and Gene Fisher were each indispensable. (ene
Fisher deserves special praise for his superlative
contributions at this stage.

Thomas A. Standish
Workshop Coordinator

- - -

Introduction to the Workshop Proceedings
by

Thomas A. Standish
Workshop Coordinator

It is tempting to begin this Introduction with a
Lincolnesque prediction that history will little note nor
long remember what we did at this Workshop.

The Workshop was hastily organized under pressure to
provide timely input and advice to a preliminary staqe of
the PEBBLEMAN environment requirements process. There was
insufficient time for the participants to prepare careful
advance technical papers for presentation. So, for the most
part, the participants came equipped only with their own
experiences, and with attitudes of cheerful curiosity, a
desire to help, and a zest for exploration of new issues.

Everyone seemed aware that we were getting our toes wet
together in a new and profound bunch of issues that needed
careful thinking and that needed the best in wisdom we were
able to provide. In retrospect, the fact that so many of
the participants did not prepare technical papers for
delivery, and so were not in an ego-involved node of pushing
their own intellectual wares, led to a spirit of
cooperation, open-mindedness, and eagerness for learning
that seemed, at times, quite magical --- especially given
the tri-lateral, military-industrial-academic origins of the
participants. In fact, as the reader will note, the spirit
of the Proceedings is remarkable for the conspicuous absence
of traditional chips on traditional shoulders.

What emerged, then, was an astonishingly broad range of
coverage of interesting issues with interestinq
observations, data, experience, and ideas cominq from many
origins. The Proceedings capture for the reader a goot deal
of the richness of what was discussed, and they are
remarkable for their scope of coveraqe. In my judgment, the
Proceedings contain a tremendous amount of fertile thought,
and constitute essential reading for anyone attempting to
acquire the "background context" or to "get spun up" in
environment issues. Most importantly. perhaps, the
Proceedings will help to sensitize the reader to the
staggering breadth of issues that need to be considered in
the environment requirements process.

So perhaps the Lincolnesque view of the Workshop is a
bit too modest. While they may not be earthshaking, the
Proceedings capture for the benefit of those not present,
one of the first attempts of a tri-lateral group of
participants to come to grips with environment issues, and
they record some of the spirit of the social interactions as
well as the ideas and experience generated by this unique
group addressing this unique set of issues for the first
time. It does not take too much crystal ball gazing to see
that environment issues will become increasingly prominent
in the 1980s. Thus, if you were not there, the Proceedings

2

capture for you some first attempts to embark on development
of the Environment as a coherent, new subfield! of
investigation in Computer .Science.

The Workshop was organized around two series of six
parallel sessions.- These parallel series consisted of the
"A" Sessions (lA, 2A, ... , AM dealing with language
standardization and specification, compiler validation and
verification, and support of language cultures, and the " B'
Sessions (lB 2B ... ' 6B) dealing with software life cycle
issues (requirements analysis, design, documentation,
program development systems, maintenance, testing, and
measurement) . A few interested participants formed a third
parallel series, the .C"S Sessions, one of which dealt with
training aad education and one of which dealt with the
social settings in which use of the Common Language is
likely to take place. In addition to the parallel sessions,
Warren Teitelman of XEROX PARC presented a color-TV film
illustrating use of the INTERLISP programming environment
before a joint session of the entire Workshop.

The conversations that took place during all of the
working sessions (except that on social settings) were
recorded and transcribed, and the participants were invited
to return edited transcripts for consideration for inclusion
in the Workshop Proceedings. Of necessity, these edited
transcripts had to be compressed quite a bit to form a
product of manageable size. it is inevitable that some
semantic distortion has crept into these summarized, edited
remarks, due to technical errors in transcription, loss of
material through summarization, and the semantic maneuvarinq
needed to turn spoken dialogue into legible English.
Nonetheless, the flavor of what was said seems to have been
captured moderately faithfully even if the individual
wording has been markedly changed from the original, in some
cases.

In an ideal world, we would have liked to submit the
current transcripts to the participants for a final round of
editing, but time has prevented us from taking this last
step. Thus, we apologize, in advance, to those whose
remarks got twisted beyond recognition or taken totally out
of context, and to those into whose mouths we placed words
they did not speak in order to smooth the flow of the
conversation and render the written transcripts legible. We
hope those so victimized will trust that we had no malice in
our hearts as we struggled to produce a legible product.

The participants were invited to bring "position
papers" to the Workshop and to submit them for publication
in the Proceedings. A number of these have been reproduced
in the second part of this volume. in some cases, the
position papers were written at night during the Workshop.
in one case, position papers coverinq the ideas qenerated in
the Parallel "C" session on social settinqs was contributed,
after the Workshop, since that session was not recorded and
transcribed. These papers serve to replace the edited
transcripts that would have been generated had that sessionbeen recorded.

3

The participants were also urged to comment on the
draft PEBBLEMAN document circulated prior to the Workshop,
and to submit proposed changes to the preliminary document
for possible inclusion. A number of such candidate changes
were submitted as a result of the deliberations of the
Workshop, and the Chairmen of each of the Working Sessions
were invited to read aloud the relevant sections of the
Prelimiiiary PEBBLEMAN document at the outset of each
session, and to solicit the views of the session
participants.

The Opening Session Address by Lt. Col. William A.
Whitaker is particularly important for understanding the
background and setting of the Workshop, and readers are
urged to study this address first in order to qain a proper
initial perspective.

4

Opening Session
Welcoming Remarks by T. Standish

Opening Session Address by Lt. Col. William A. whitaker, USAF

Ivelcom ing Remarks
by

T. Standish

On behalf of the Computer Science Department, I would
like to welcome you to the Irvine Campus of the university
of California.

This is the campus where some chemists made the
discovery that fluorocarbons wreck the ozone layer. While
some say this discovery has saved the entire future of the
planet, others feel that the major impact has been to pelt
you with a lot of new deodorant ads, such as the one which
urges you "To get off your can and on the stick.

A word about our sponsors -- This workshop is
sponsored jointly by the-Army, Navy, and Air Force, and, as
such, is a venture of the joint Services

I would now like to introduce our speaker.-for the
opening session, who is Lt. Col. William A. Whitaker.

In connection with the Common High order. Language, Col.
Whitaker works at the pleasure of the Undersecretary of
Defense in the capacity of Chairman of the High order
Language Working Group (HOLWG) . lie has been involved with
comoputers since 1953, when lie cut his programming teeth on a
604. He has a Ph.D. in Physics from the University of
Chicago and he has probably consumed more computer time than
anyone in this room. At one time he had one an~a a third
6600s at his disposal full time for a period of six to seven
years, and he has accumulated personally ten man years on a
6600. If any of you can match that you're welcome to try.

Opening Session Address
by

Lt. Col. William A. Whitaker

Thank you. I will quickly bring neopl.e up to date,
giving a very fast overview of the proqram. T would like to
give the entire one'hour talk in about 10 minutes, so, if
the view graphs move too fast for you, come up and get them
later, because I'm not going to keep them on very long.
We're talking about the DOD Common High order Language
effort, and we're talking about what we call embedded
computer systems. This has a strange legalistic definition,
but generally they are weapons systems, communication
systems, command and control, avionics, simulators, real
time systems, and systems that are rigidly attached to some
very large overall system. We are not talking about what we

5

at the DOD call automatic data processing equipment --- that
is, financial management, inventory, accounting, payroll
that sort of thing. In particular, that's (lone by COROL in
the DOD just like it is everywhere else. We are not talking
about large scientific computing which is done by FORTRAT,
just like it is everywhere else. I emphasize this all the
time because it is in our charter that we're not in the
Common Language effort to replace rnnOL or FORTRAN. In
fact, it is the success of COFOL and PORTRAN) that encourages
us in this work. We are not trying to compete.

I will also remind you that we're involved in
programming languages --- programmers talking to computers,
not special application packages or simulation languages
like GPSS or SIMSCRIPT, not automatic test equipment
languages like ATLAS which is a test designer to technician
language. We're talking specifically to computers, not
talking to data bases or whatever. The High Order Language
Working Group is running this for the DOD. The members are
the Office of the Secretary of Defense and the Services. It
was specifically charged to formulate requirements for DOD
high order languages, evaluate the existing languages, and
recommend implementation and control of a minimal set of
high order languages. One recommendation is a nice minimal
set, but that's not the way it started out.

When we started out, we had no control, no commonality
at all in the DOD. We did not even have high order
languages, for all practical purposes. A very small amount
of what was done in the DOD was in high order languages. So
we started out and made a DOD Directive and said you're
going to use high order languages unless we know the reason
why; and its going to he hard for you to find a reason why
because the majority of the money we spend is in
maintenance, not in program development, not in writing the
programs, but in maintaining them for 9 years. High order
languages obviously have great advantages in that area over
assembly languages. It further says that the approved DOD
high order languages will be assigned to a control agent.
We're not going just to name them on a piece of paper, we're
going to control them And the interim list of approved
high order languages was given as: COBOL, FORTRAN, CMS-2,
SPLl, TACPOL and JOVIAL-J3 and J73. These were the
languages chosen from the hundreds of languages we had
beforehand that we restricted things to. That certainly is
a small number compared to what we had, perhaps not a
minimal number, but a small number. Why aren't we happy
with that?

Languages on that list are not necessarily the highest
technology, the most appropriate, or the most powerful
languages you'd like. They are not satisfactory. Beyond
this administrative solution, we need technical advances.
We need high order languages that reduce the total life
cycle cost of software, that promote responsiveness,
timeliness, flexibility, reliablity, etc. Reliabilty is
obviously very important for the DOD. Maintainability and
efficiency are also important. Commonly, the situation has
been in the past that high order languaqes have heen

A .-- IIII

----7--
rejected because they produce inefficient code and
everything has to be squeezed down into that tank, that
plane, or what have you. The old argument says that next
year core will be twice as cheap and computers will be twice
as fast. But this doesn't make much difference if you have
already bought your computer, or if, in fact, you bought
6000 of them, and you've got to squeeze everything into
those little boxes. You don't get to buy a new one next
year.

Well, those are nice wish list kinds of things but
they're not very quantitative. We have gone through an
exercise to define the requirements on a functional level,
that is, not so specific that they really define a special
language, not so general that you can't define them. We
have done this by an iterative procedure. We generated a
document called STRAWMAN, and that was circulated, commented
on, and improved and called WOODENM AN. The next one was
TINMAN. TINM1AN had an interesting property. It was noted
at that point that all the applications areas that we were
dealing with could he satisfied hy a single set of
requirements. we started off thinking there was going to be
a set of requirements for avionics, a set of requirements
for simulators, for climatic control, etc. When we got down
to that stage, there was only one set of requirements, both
necessary and sufficient, for all the applications. we
finally understood that, but it was a non-trivial thing to
start with. It doesn't say that there can be a language
that satisfies all those requirements, just that if there
were such a language, it would be the right one. We now
have an IRONMAN (IRONMAN by the way is not the name of a
language. We don't have a name for the language. DOD-l is
not the name of the language) . IRONMAN has been revised,
and next week we will have a STEELMAN. These are
requirements for the language. The STEELMAN looks pretty
much like a laniguage manual. It has syntax, types,
expressions, constants, control structures, procedures, and
that sort of thing, but it is not a description of a
language. It is a description of functional requirements
that the language must meet.

We have gone through three economic analyses of the
benefits of using the language, the introduction rate, the
adoption rate, and that sort of, thing. We're not here today
to debate the advisability of doing this whole program.
We've been operating on this program for three ancl a half
years. It has been widely commentedI on and we have a number
of independent economic analyses. we will have even more I
am sure before we are through. All of the economic analyses
Agree that with an appropriate languagle and tools the ')O1n
can save hundreds of millions to perhaps several thousands
of millions of dollars. That seems like a fair amount of
money, but then we're spending a fair amount of money,
perhaps three or four billion dollars a year, on software as
it is. So we can save an interesting fraction of that.
There are technical benefits and there are commonality
benefits. Commonality is often considered cost avoidance.
That is, if you have a compiler that two people use, you
didn't have to write it a second time.

rr

7

The goals of the program are: A modern high order
lan uae in order that you can really d6 ti program in high
order language and not have to drop down into assembly
language as we do now. Programminq tools --- a language by
itself is only a step; you really have to have the
programming tools and to develop the environment in order to
increase productivity. A common high order language allows
you to share the expenses over a number of different
programs and therefore reduces the cost. A minimal number
reduces the cost to the smallest number. A sinq - language
however has unique advantages. You can expect a air amount
more cooperation from outside DOT) if we could get down to a
single language.

We evaluated the existing languages against our set of
requirements, which was at that time contained in TINMAN. A
number of languages were formally evaluated, and twice as
many were informally evaluated --- most of the ones you can
think of: COBOL, FORTRAN, TACPOL, CMS-2, CS4, JOVIAL J3 and
J73, LTR, LIS, PASCAL, ALGOL 68, PL/I, ... , all sorts of
languages. The group did not see any that we wanted to make
the common DOD language, even with significant
modifications. However, the evaluation group, the
contractors, and the High Order Language Working Group were
unanimous in the statement that it was desirable and
feasible within the current state of the art to produce a
single language meeting essentially all the requirements.
This is the other side of the requirements statement. Not
only if we had a language that met the requirements would
that do it for DOD, out it now says that, on the basis of
paper studies, we believe that the single language can be
produced. So we went to a design phase to produce such a
language.

Design contracts were let for the first phase of three
phases. The first phase was a preliminary design. The
second phase is a full design including a translator. The
final phase is for initial maintenance and control, so we
can get squared away. There were four Phase I contracts
awarded for competitive prototyping. The contractors were
CII-Honeywell Bull, Intermetrics, SofTech, and SRI
International. You will note that all the successful
bidders, and this was an open RFP on which we had a number
of bidders, chose to start from PASCAL as a base. This was
not a constraint on the contract, and other bidders chose
other bases, but all four Phase I winners chose to start
with PASCAL. This is a convenience for us. The Common
Language is by no means to be a PASCAL superset. What we're
designing against is the set of requirements that are very
much different from the specifications for the design of
PASCAL. PASCAL is supposedly a small language --- a
teaching language. We obviously have other requirements.
Nevertheless, there will obviously be a resemblance to

PASCAL, but it is in no sense a PASCAL superset.

You will note that there are colors attached to the
Phase I language designs --- green (CII-FiB), red
(Intermetrics), blue (SofTech), and yellow (SRI). For
those, you have seen the product of the first phase, and

8

those were the contractors associated with them. At the end
of the first phase we got a product -- the preliminary
language designs. These were reviewed by 80 industrial,
acadeitic, and military teams. on the basis of these
analyses, a decision was made to continue in a prototype
fashion, two of the contractors -- CII-HB and Intermetrics.
Now we are in the next stage of the exercise.

Having the design well under way (that is, we're pretty
far down the line now) , we can turn our attention to the
development environment. We will probably spend 80% of the
program resources on the development environment, and 20% on
the actual language itself, so we are talking about a fairly
extensive development outside just the language design.
There are compilers. obviously we need compilers in order
to get acceptance of the language. one of the main
difficulties with the languages we have now is that if you
wanted to go out and use them in your program and you went
out for bid on machines, and you've got this wonderful
machine that is the low bidder, it's not going to have a
compiler for your favorite language. in fact, it's probably
not going to have a compiler for any language, andi that's a
difficulty. High order languages will only be popular in
the DOT) when compilers are widely available. We're going to
write compilers, but more than that, we have to provide
compiler writing technology for those compilers that we
don't write.

We need tools of all sorts. In doing an audit of major
software projects in DOD recently I have been very
disappointed to find that there are very, very few tools in
evidence, and those that are in evidence are little used. I
have lived in programming environments in which the tools
were very powerful and very useful, and an increase in
productivity of orders of magnitude is possible for very
specialized tools. Very few of these are available. Last
Thursday, I was at an ACM/NBS Symposium on Tools for
Improving Computing in the 80s at Gaithersburg. That was
the title of thie Symposium, and as far as I could determine,
there were no papers on tools. However, they all recognized
that was the reason they were there, looking for somebody
else to tell them the way. Today, we are looking for you to
tell us the way, and. in fact, to come up with tools. We
need other supporting software, automatic translation aids,
application packages, training, documentation, and all that
sort of thing. PEBBLEVIAN is the requirements document
assoc~iated with the development environment.

Finally, I want to brinq out the point that control of
the language is extremely important. it certainly is
something we have learned from~ COROL anti FORTRAN. You can't
just publish an interesting paper and expect anybody to go
out and write a compiler that looks anything like what you
thought it was going to be. In the past, there has been a
great deal of difficulty in defining the language so well so
that the compiler writer could know, and there's been very
little incentive to check on his being able to do so. In
particular, the design of this language is not to be left to
the compiler writer, which has been the situation in the

9

past . We will have validation of compilers. The systemsI
that exist today, that work and that have improved the state
of the art considerably are COBOL and CORAL 66~ primarily.
We will go through the formal procedures for standardization
of the language. You will note that standardization is
something that has been a slow process in other languages.
Standardization has been impeded by the following process:
you publish an interesting language, lots of people go out
and implement it, all differently, then the standardization
process has to get all these different compilers together.
We're going to start off in a firmer position so that we
don't ever generate that mess that takes 10' years to
resolve, hopefully. Accessibility of tools obviously is an
important part of control.

Let me go through the schedule. In August '77 the
preliminary design contracts were let, April '7P the Phase I
selection was made, April '79 the final selection will be
made between the two remaining contenders. There will be
test and evaluation of the language, not of the compilers,
but of the language itself, something I don't believe has
been done before. in this thing we expect to write a fair
amount of code in a number of different application areas to
test the suitability of the language and to find
difficulties. one of the problems in the past is that it
takes a long time for a language to settle out because it is
written for one particular project which works with it for a
while; and another project may come along and pick it up
two or three years later, and they find all sorts of changes
they'd like to see made. It is not so much a function of
time as a function of the number of application areas and
the amount of code that's been written. We're going to see
if we can compress that to a very short time. Compiler
implementations will take place during this period. In 19P(O
we're going to have availability of the language. By
availability we mean that the language should be better
supported in the number of compilers and tools and
specifications than any other language on the approvedi DOD)
5000~%.31 list. Then we will add it to the approved list.

I might point out just a few of the contacts we have
made in this area. The European Community has been closely
involved with our efforts. They started an effort that was
very similar to what we're doing. They had political
difficulties, were coming along fairly slowly, and have
essentially abandoned that effort in order to follow us.
The governments of the United Kingdom, France, anti the
Federal Republic of Germany have also contributed quite
considerably to this effort. The International Purdue
Workshop, LTPL-E and LTPL-A have supported us. We have
Peter Elzer sitting here who is the former Chairman of
LTPL-E and he represents the Germ:an Government.

Let me quickly go through the exercise for today.
Environment requirements are what we're doing. The
requirements for the environment are obviously in some sense
looser than the language requirements. The language
requirements are rigorous and specific and they are, in
fact, requirements on the language. In some sense, certain

10

environment requirements are more of the situation of what
we want to do, of a wish list of what we intend to do with
our program. In some cases, particularly in the situation
of control, they are very firm requirements, but it's a much
broader spectrum in this area. We do wish detailed
environment requirements, just as we have the requirements
for the language, and we wish them to he widely circulated
and commented on. We've been very open in this entire
exercise, and that has been extremely useful. We say for
public comment, but obviously that also means for comment
inside the government and from government contractors. The
DOD is involved in 50J% of the software that's being
developed in this country, so when you say "open comment",
at least half of the people out there work for us anyway.I
might point out that is in marked distinction to the
situation with hardware, where we used to have a voting
majority, but have it no longer. In software, we are still
dominant. The requirements are to provide for management
and control of the language. obviously, the management
issues that are addressed in the environment document are
not really the concern of this Workshop.

The control of the language, particularly in the
technical sense of control (i.e. how you do it) , is
obviously very important; and again, so are the tools. I
might very briefly go through some philosophy, putting the
situation in context. We do not intend to force the
language or the tools on any systems project office, that
is, speaking for the moment, for the Migh order Language
Working 'J3roup and for the 13ndersecretary of Defenise. We
regard the effort as successful when it is adopted
voluntarily by these program offices because it is clearly
better, cheaper, more available, more reliable, etc. That
is not to say that somewhere else in the governnent,
somebody may not require it, but that is not the purpose of
this program.

We do not intend to provide all possible tools, just a
basic tool box. We will encourage the normal software
marketplace to produce tools and market them in the normal
fashion, whether they be produced directly for the
government, produced independently, rented, or what hdve
you. We will be in the position of generating a market for
these tools in the form of a common user to which it will be
convenient to market. It is very difficult for the software
industry now to market tools for'J73, for -instance, since
there are only a couple of users of J73. Further, we do not
wish to write all possible compilers, but the acceptance of
the language depends upon very wide availability of
compilers. We shall provide some compilers as necessary for
the ongoing programs, and shall encouracie others to build
and validate their compilers through our validation system,
particularly the machine manufacturers. We will provide
compiler writing tools and facilities as we dievelop themr
that will be widely available. we will obviously not
provide all training for the languale. This will he done in
the normal way; contractors normally provide their own
training, the government provides internal training, and so
forth. I must note that, in general, there is very little

training, and there is a fair amount of evidence that
training does markedly increase productivity. A fairly
recent study by IBM indicated that experience in training in
the language itself, just that, can increase program
productivity by a factor of two. The common occurrence in
the industry is that a programmer hired off the street to
work on the $50 million effort gets a full four hours worth
of training in the language. That's the state of the art.
I don't believe that is cost-effective. We will provide
materials for the training as necessary. That also
indicates we may wish to produce such training materials and

£ such other materials in different human languages, because
we are looking for a certain international flavor in this
exercise.

The PEBBLEMAN does not yet exist. There is a
Preliminary Common Lanquaqe Environment document which we
have sent out to you. It is preliminary; there are lots of
modifications we would like to make. it is something that
has been fairly difficult to achieve, because it has been
difficult to get people to reply with definite line-by-line
changes. We hope that this Workshop will produce such. In
fact, the comments and input from this Workshop will be
incorporated into this document which will then become the
PEBBLEMAN. Our time scale for this effort is that next week
it gets typed. It is to be published by the 30th day of
June, so we need the comments this week and we need them
hopefully in a form which is appropriate to add to this
preliminary document. I remind you, of course, that what
we're talking about here is primarily the DOD environment,
the development and maintenance environment. That is
different from some others, particularly the academic
environment. We are talking about building large programs,
very long lived programs. We are talking, in some cases,
about working in a different physical environment. For
instance, there's an awful lot of use of cards in the DOD
programming environment. Lots of people here hAven't seen a
card in a long time, nevertheless, there's a lot of them
still around. Which is not to say that is the thing we bave
to stay with forever, but rather to realize there is a
situation which we're trying to address. Not all comments
from the Workshop may necessarily be appropriate for the
PEBBLEMAN. Perhaps some of them of the more qeneral nature
are appropriate for the program management plan, which we're
revising too. The present version of the preliminary
PEBBLEMAN document we have here is primarily for guidance
from this Workshop. We are not bound by anything in the
preliminary document. Nothing is sacred --- neither the
exact sections, nor the particular statements contained in
them. Given expansion in~ detail, with specifics, we can
later determine what is required, and what perhaps is just
desired.

I guess that gives you what we regard as the importance
of this exercise. There will be a Workshop Proceedings
produced that will be valuable for other people engaged in
this exercise later on. On the other hand, certainly the
most concrete publication I car offer is that it will
directly affect the DOD requirements as expressed next week.

12

So we do have a real need for this information.

R. Balzer: Can you say anything ahout the time frame that this
Workshop should address in terms of creating, specifying, or
portraying this program development environment?

Col. Witaker: We normally are saying the program is "for the
80s"; that is, the language will become available in the
1980s. We note that from historical observation, a
generation of either tools or language seems to be about ten
years, although there is no firm commitment to that
duration.

K. Bowles: You've given a very delicate treatment of the
question of management. I, for one, wish you success. At
the same time, note that DOD is not noted for voluntary
action and you've laid out a plan that sounds like it
depends on voluntary action. My question is, is there a way
that we in this voluntary Workshop can strengthen your hand
so that maybe there's a greater possibility of success?

Col. Whitaker: I tried to phrase my statements on that very
carefully. This Group, thp High Order Language Working
Group, has no charter to enforce the use of the language.
That is not to say that the Undersecretary of nefense
doesn't have that charter. There are a lot of difficulties.
We have people now who are committing themselves to the use
of the language. On the other hand, there are a number that
are sitting back and waiting, as well they miht. There's a
reason for a number of people not to commit themselves. If
the language is technically successful, we certainly will
have a large popular following. Then I think things will go
very well. So the most important part that I recognize
right now is really the technical success of the language.
The difficulties that arise would be with individuals in the
organizations. I would not, at this point, solicit your
writing your Congressman on the matter. We are coming along
very well. I might remark that on the basis of what is
happening elsewhere, in other countries, it certainly
appears that this is an effort whose time has come. There
is wide reccgnition of that and so things are happening.

-: On the question of standardization, has anything been
done on subsetting? For example, will subsetting be allowed
in this language at that time?

Col. Whitaker: We have not finally resolved that question, but
tentatively, we see no reason to subset the language. We
regard subsetting as a very dangerous thing because it leads
to dialects.

-: What's to prevent a particular contractor from using only

13

a portion of the languagje?

Col. Whitaker: Using only a portion of the language is a good
thing. That is not subsetting.

-. : That's a subset.

Col. Whitaker: No, that's not a subset. There may be an
administrative restriction that will not allow programmers
to use. a particular portion of the language on a particular
project --- that's fine, because the program will compile on
anybody else's compiler. However, what we consider
subsetting is when the compiler itself refuses to recognize
some construct. The validation procedure will require that
every validated compiler recognize every construct of the
1 ang uag e.

A. Gargaro: Going back to PERBLEMAm, once this June 30th
document is published, where do you expect to get the
majority of feedback on the document --- from the
participants of this Workshop, or from the DOD and the
industry, at large?

Col. Whitaker: Presumably the participants of this Workshop will
participate, but mostly those that did not participate would
be involved. That's a much larger group.

--- : Do you have in the back of your mind a schedule saying
when you would reconvene another Workshop?

Col. Whitaker: Not necessarily a Workshop. We would reissue the
document when there are an appropriate number of comments.
I would think it would not be before January 1979.

----- : What is the mechanism for distributing the document?

Col. Whitaker: We have a large mailing list. we talk about it
wherever we go. People write in. It will be formally

*distributed through the Services. Everyone here will, of
course, get a copy.

S. Crocker: On the subject of embedded computers ve.-sus
non-embedded computers, are you trying to encourage, to
discourage, or have you given any thought to the matter of
technical implementation of the language on the ordinary
machines we see around?

Col. Whitaker: That's a good question. "Embedded" has a very

4r

14

special meaning in the DOD. The meaning is those computers
that are brought under the 5(00 series of regulations. The
non-embedded computers are those reported under the Brooks
Bill. This is not a hardware distinction. We have embedded
computers that are 360s and 5 s, so the distinction isn't
really that clear. Further, in the DOD there is a large use
of cross compilers which are getting to be much more the
common environment; so development programs are very common
on 5600s and 35s, cross-compiling down to whatever your
favorite mini is. Therefore, the compilers will more likely
be hosted on these sorts of machines. The applications of
writing payrolls which may he on the same machine type are
not what we're interested in --- that's the distinction.

15

Session IA: Experience in Language Standardization
Cdr. John n. Cooper, Chair

J- Cooper: We have two extreme methods within the POP for
controlling languages--the Navy's and the Air Force's. In
the Navy we are the controlling agent of CMS-2, which has
been around the longest. We have two compilers, one for
16-bit machines and the other for 32-bit machines. About
250 copies are installed around the world.

Copies of these compilers are installed and maintained by
the Navy. The way the configuration management is performed
is that we have only one copy of the compiler's source code
and it's locked in a vault at the compiler maintenance
facility, and nobody has access to it. When we go to a user
site to install a compiler, we only give them an object load
module. Therefore, since nobody has the source code, nobody
diddles with the language. We do all the maintenance of the
language for them so we know at all times the status of each
of those 250 compilers. As a result, we have the burden of
maintaining and providing the documentation for the
language, as well as accounting for all the bugs in it. Now
I'll let Sam TiNitto tell you how the Air Force controls
JOVIAL, which is more like the COBOL way of doing things.

S. DiNitto: Colonel Whitaker talked earlier about nOP
directives 5010.?" and 90t'P..30. What happened was that each
of the three services were supposed to come up with their
own set of regulations governing the use of languages for
themselves. Now the Air Force came out with a regulation
called AFR300-10 which limited the number of languages that
the Air Force could use to a small number, namely FORTRAN,
COBOL, and JOVIAL. It excluded CMS-2, SPLI. and others.
The Air Force was designated to control JOVIAL within DOD.
That hoeans that any DOD user would come to the Air Force for
information about JOVIAL. The Air Force in turn designated
a systems command group, which we are a part of, to be the
control agent.

Unlike the Navy JOVIAL is not frozen. I believe it is
5000.31 that allows you to make changes to the language not
more than once per year. The Air Force fully accepts that,
which is wrong in my opinion. We still have a mechanism,
that Colonel Whitaker mentioned, by which you can avoid
using JOVIAL if you have a good enough reason for not doing
so. So far, since the control mechanisms were instituted,
we see more reasons for not using JOVIAL than reasons for
using it. We set up this elaborate mechanism which consists
of a designated control agent, and he is assisted bv A
policy control hoard ... which regulates how the lAnguage is
going to be controlled.

The designated control agent is strictly a bureaucrat.
Technically he doesn't have much to say. So he has
delegated certain tasks to a language control agent, in this
case for JOVIAL. This is the organization I belong to. It
is responsible for performing all the technical duties
associated with controlling the language. These include

16

validation of compilers. one thing I should point out about
validation is that we will not validate or certify a
compiler forever. It will only be validated once per
application. The principal reason for that is that changes
may come into the language and we want the new user of the
language to get the latest version.

Assisting the control agent is an organization which is
going to be called the Language Control Facility. It will
collect data on the use of the languagle and information of
that sort which we hope will give us some insight into where
the problems are in the language. It will provide
programminq tools for the language (whichever ones are
available) and give assistance in buyingl compilers.

[M r. fiNitto goes on to describe the lanquaoge control
-bureaucracy in the Air Force. lie concludes by observing
that it will probably be difficult to force the various
control agencies to strictly adhere to regulations
regarding the use of a standard DOD language and its
associated tools.]

J. Cooper: I want to set the record straight on a couple of
things. Our language is not at all frozen. It changes not
infrequently, but the major point is that there is a
Navywide Configuration Control Board that manages the
changes. The proposed changes are submitted to the board.
We approve, or disapprove them, and then they are
implemented by the compiler maintenarnce group. So when we
have a change to the language or to the compiler, only one
organization makes the change and then everybody has the
same change.

P. Wegner: Do you have any quanti tative measure as to how many
changes are made or how large they are?

J. Cooper: Well, we have one basic ground rule andi it goes
without saying that D)ODI will have to have the same ground
rule, that all changes have to be upwards conpatible. So
you don't do anything to impact any existing systems.

P. Wegner: Are there several changes a week, several a month?

3. Cooper: No, maybe eight to fifteen a year. we've always
controlled the language ")y controlling the source code, but
we've only managed it on a Navywide basis over the last fourI
years. Since we have done that, it has served to lim.t the
number of changes. Before that, the com~piler maintenance
activities performed their own configuration management, and
made whatever changes they wanted to. Now that it is
controlled on the Navywide basis, it has served to reduce
the number of changes.

S. DiNitto: When a so-called upward compatible change is put
in, we found often that all the software has to be
recompiled. This is not a minuscule task.

3. Cooper: That can be a problem, buJt we only have the two
compilers, and when we go to evaluate a change we know,

17

really know, what that change will involve and whether it
would cause some subtle incompatibility. If it is goinq to
cause a subtle incompability we don't implement it.

M. Wolfe: How many users do you have?

J. Cooper: Well, we have over 250 compilers installed, so that
means that there are approximately 250 geograhical locations
that are doing Navy software. On the average there are 40
or more programmers at each location. So we've got 'tens of
thousands of users.

-------- : These two compilers, do they only operate on two
separate machines?

J. Cooper: I was afraid you were going to ask that! The Navy
is very standardization oriented. We have a standard
language; we have standard computers; we have
documentation standards that everybody has to follow. So we
have a limited set of computers we have to generate code
for. The 32-bit variety is hosted on our standard computer,
the AN/UYK-7, and it only generates code for the AN/IJYT<-7.
However the one for 16-bit word size is quite different.
It's written in standard FORTRAN, it's a true cross
compiler, and it's hosted on a wide, wide variety of host
machines. But it has a limited set of targets, namely, the
standard 16-hit machine.

S. Crocker: I was looking for some standard Navy systems that
are programmed in CMS-IM, and had expected that TAVMACS, for
example, would he one of those that I might find in CN S-I .
I was told that although it was a communication system,
although it was mandated to be written under 2M. in fact it
was written under assembly language. Where is the trouble?
Why the discrepancy?

J. Cooper: I don't dig the discrepancy.

S. Crocker: The Navy has standard languages and has mandated
that they be used in development of certain systems, and now
we find that particular systems didn't develop that way.

J. Cooper: The language was available and was a stand;.rd. What
we did not have was a mandate that made everybody use it.
The only competitors in the Navy we have are assembly
languages. We don't have any programs written in FORTRAN or
PL/l or anything like that. DOD instructions 500.29 and
5000.31 were the first mandates that gave us 1_verage encugh
to knock-off the use of assembly language. So now even
assembly language usage requires waivering.

S. Crocker: But why was the decision made that way? When?

J. Cooper: Somethina that DOM has got to recognize eventually
is that the Department of Defe:'.se is perverted for
efficiency, especially for Avionics systems because their
space is so limited. Communications thinks they have co be
super-efficient. Every community has a reason for its
perversion which is extreme.

bm

18

S. Crocker: Is there some evidence that these languages can't
compile as efficiently as assembly code?

J. Cooper: There is some evidence, yes. It's biased evidence.
They always point out how inefficient the compiler is
compared to assembly language. They always compare a
perfect program in assembly language, not your average
assembly language program.

S. Crocker: For other languages it is fairly clear that one can
compete well with assembly coding on the average,.

J. Cooper: We've done some benchmarking. We know kind of where
we stand. CMS-2 is not nearly as efficient as we would like
it to be, and it is being optimized right now. On the other
hand, for SPI/l, our newer language, we've done three
benchmarks, and it comes out around 07%, and that includes
all the runtime support overhead that goes with it.

-------- : In space or time?

J. Cooper: Both. In these benchmarks we actually did the same
program both ways for comparison and came up with
approximately the same figure all three times.

C. McGowan: That is a remarkable figure, but can you say
something about what percentage of software development
efforts get exceptions and do assembly language
implementaticn rather than use one of the higher-level
languages?

J. Cooper: Since DOD instruction 5000.31 was signed in November
1977, there has been no waiver granted for assembly language
use. If anybody is doing it since that date, they are doing
so in violation of that directive.

C. McGowan: Have there been any requests? How many software
development efforts preceded that and what kind of numbers
are we talking about?

J. Cooper: Whether it is a DOD or a Navy policy, you never maKe
them retroactive. So the only ones that would be candidates
to come under the thumb of this new requirement wouiri be
those new starts after that date. There are literally
thousands of Navy projects using computers that started
before that. It's been a year and a half, and in that time
there have probably been a hundred or sc new starts.

M. Wolfe: In the language CMS-., do you allow embedded assembly
code?

J. Cooper: Have to.

M. Wolfe: Do you count the use of the embedded assembly
language coding as using the high level language?

J. Cooper: There is no ruling printed on that. In the legal
profession they have some court cases that help set the
precedence. Clearly, a guy who goes in with his first card

19

as a header card to drop to assembly language, and the last
card in his deck is an "end assembly lanquage" card, you
know that he's cheating. In the case of the contracts like
the F-IP at Mcnonald ouqlas, we came with a 'iarrl
percentage. Once you force them into the higher-level
language box, then they d]on't get so carrierd away with the
assembly language. Then they usually use it for I/O and
optimization.

J. Cooper: The real purpose of the workshop is to develop
inputs for guiding the future of DODI. I would like to use
the second half of our session this morning to start
discussing more of how DOD1 should be managed. For example,
should we manage it the way the Navy does CMS-2 or should we
manage it the way the Air Force does JOVIAL, or something in
between the two, or one of each? These are the kinds of
things that would provide good inputs for the Pebbleman
document.

To give you the benefit of some of the problems that we
encountered at HOLWG meetings I can bring up some of the
issues that were raised there. You have to be very careful
that you separate in your mind and in your requirements the
difference between a language and an implementation of the
language. Is that a requirement on the language or is that
a requirement on the compiler. You often get fouled up in
the two when you fail to keep them separated. Another thing
is that there are three levels of control for DODI. ')ne is
that DODI haz world-wide or international implications and
so we end up developing a language to be used by everyone, a
lot of people in the world, who we don't have any control
over. There is another level, the DOD-wide level if control
where we do have the say in how things are done. But even
in that context there is yet a third level, that the
individual services may do things differently. So as you
address the different control measures and mechanisms, you
also have to keep the different levels in mind.

: Could you expand and enlighten us a little hit more
about the two approaches? Particularly, what are the
inadequacies of the Navy's approach for doing what it is
supposed to do, and what does Sam feel the inadequacies are
for the Air Force's approach.

J. Cooper: The main reason ours works is because we have such a
limited set of architectures to target for, hosting's no
problem. The m.re targets that you try t. support, the
larger it makes the project.

Also, it is almost the same difference as between
centralization and decentralization. Correct me if I am
wrong Sam, but their approach is more of "here is a
specification for a language; you build the language to
this spec and then we'll test it." In our case we GFE it.
In DOD we have some leverage now. There is a DOD
instruction being staffed now that will limit the
architectures in DOD.

T. Cheatham: An architecture is the machine?

20

4 J. Cooper: NO. DOD is coing to accept a weird definition of
computer architecture -- that as seen by the assembly level
programmer. It is riot a physical structure. It's a virtual
naked machine, no operating system .

S. DiNitto: Basically the Air Force does not really have a
serious hardware standard. The past history has been that
the system development office does not even specify the
hardware. it specifies capability, and this puts the weight
on the shoulders of the contractor. It leaves the systems
program office out of the position whereby they could be
accused of putting on unrealistic requirements in case of
nondelivery. A wide variety of hardware causes problems
because compilers aren't always available.

[DiNitto explains that from his experience, contractors
tend to want to use stable languages which have been in
use for som ! time. In the Air Force standardization
system, waivers to use non-standard lanciuaqes are often
granted on the basis that the lanquage to be used is very
stable.

Di~itto also briefly describes the British Air Force's
efforts to control their high-level language by freezing
it.]

M. Wolfe: I feel trapped when you say a language is frozen.
Language is going to be evolving. It's going to change.
You have to allow mechanisms in your control so you can
permit this.

P. Elzer: I don't know whether to agree or disagree, but I
don't think that it is a law of nature that languages keep
changing. Why is it not possible to freeze it for, say,
five years with no changes at all? And then do all the
cnanges which mnay turn out to be necessary after careful
consideration all at one time. From a user' s point of view,
I would prefer such a policy very much to a situation where
the standard keeps changing "just a little bit," but all the
time.

P. Wegner: The whole philosophy of software methodology is that
we have to design systems with change. I think it will be a
disaster to design this language and propose that it does
not change. Everything does change. The height of those
actions is to assume that man is not going to change. A
language is a complex application system.

A. Gargaro: I'd like to go back to what Ccdr. Cooper had said
earlier, that we should he looking at some of the contexts
that might help us in language standardization-. In my
experience, one of the problems with language
standardization is that we're not sure what we are trying to
standardize. I think it would be very beneficial if Witt.
DODl, we did strive to get a formal rigorous specification
of this language. How are we going to do this, and how can
we look at the design specification of DOMi so that language
standardization does become a realistic goal, not
necessarily wanting to preclude the possibility that the

21

language will have to change in time?

[Tape breakage causes loss of further discussion on
formal language definitions. Conversation resumes with
P. Wegners next remarks.]

P. Wegner: Clearly, what we want to do is to come up with some
sort of proposal for language control that will he simple to
learn from the current method of language control in the
DOD. I don't know how many people you have in your control
group; it sounds like a very complicated process. What is
needed is some sort of proposal to control the language and
also the kind of standards that the control qroup needs in
order to operate efficiently

J. Cooper: The size of the control groups is dictated by the
method. Our control group is very small. I don't know what
the Air Force's is. You've got a lot more boxes on your
viewgraph than I would have on mine. [Reference is to
viewgraph used by S. DiNitto.]

C. McGowan: Let's suppose that the common language works and
becomes one of the standards. Suppose this standardization
is adopted. How would tnat impact your efforts in your
agencies, and if it would adversely affect them, what would
you like to see change? How would you like to see this
session on language support written? How do you envision
interacting with your group?

J. Cooper: Well, I'm in a position where T can take it or leave
it. I don't mean that facetiously. For example, whatever
is there, I can take it and run it exactly the current Navy
way. I can pick one compiler, one implementation of DOo)l,
freeze it, and say "that's the Navy's standard".

C. McGowan: But there will be one agency spanning all the
services rather than each service having their own. Is that
correct?

J. Cooper: That's not clear.

S. DiNitto: The point has been brought up that each one of the
services would be responsible for each of those three boxes,
and I do not agree with that. I think it should be totally
centralized. [The three boxes -..o which DiNitto refers on
his viewgraph indicate the areas of language control,
language support, and language validation.]

J. Cooper: I think it should be centralized toc. I still feel
strongly that '--he language can be frozen.

C. McGowan: Do you have any experience in centralized
languages? Are FORTRAN, COBOL centralized or are they
distributed?

J. Cooper: No, they aren't centralized at all. I don't think
so, especially COBOL.

C. McGowan: I mean COBOL within the Navy.

22

J. Cooper: No. The Navy just runs the COBOL validation for the
government.

C. McGowan: Suppose the common language is as good as everyone
hopes. Do you envision that within the Navy, people will be
using CMS-2 as much as or more than the common language by
1985?

J. Cooper: It will depend on how simple it is, how efficient it
is, and those kinds of things as to whether it is going to
be popular with the user community. If contractors or
programmers who want to use DODl convince their management
they want to use it, then it will ultimately be accepted.
You have also got to take into consideration that we are
still going to have those seven languages on the currently
approved list in the inventory in the year 200.

P. Wegner: They might go away in terms of new starts.

J. Cooper: Yes, new starts, but we will still be supporting
those other languages for the next 20 years.

C. McGowan: Is it true that you and Sam agree that there should
be a centralized control that spans the services? That
would seem to he a strong statement that's not that strongly
placed in the Pebbleman.

J. Cooper: I agree.

C. McGowan: Can we discuss the pros and cons (of centralization
versus non-centralization]. There must be an opposing team.

S. DiNitto: I suppose to keep everybody happy, you give them a
piece of the action.

P. Wegner: Are there any technical reasons for having separate
control organizations that you can see?

J. Cooper: Technical, no. They are all political, financial,
and other things. Mostly NIH. Everybody's got to have
their own piece of the action to feel important.

D. Luckham: How about setting it up as a DOD organization?

J. Cooper: I think that is the only way It would work. What
was originally in Pebbleman was the implication that one
setvice would be assignee a language control facility, and
another service would be assigned to language support, and
another service would be assigned to language validation,
and they'd Oivie it up that way. But T don't even think
that would work anymore ... With each of those joint
projects you end up with three subsets -- Navy, Army. and
Air Force. The problem with that is that it's a tri-service
system. That is, you have representatives from the services
as opposed to having it, not as a tri-service, but DO)D,
where you have a separate entity, identified with the DOD
level, and you staff it at the DOD level.

J. Sladen: We in the Air Force Armament Lab are under the

I

23

restraints of RADC and the JOVIAL control. However, we are
also looking at the way the Navy does things in that we plan
to have a standard compiler. We have what we feel is a
technical solution to the problem. We have come up with a
way of standardizing using JOVIAL. What we are going to do
is have one compiler. That compiler will be approved by
RADC. As a matter of fact, RADC is writinq it. Once we get
the compiler on the CDC r60 we are qoing to use it as a
standard compiler, and any new code generators written for
any machine will run on that particular compiler.

The next step will be to write numerous code generators to
retarget the compiler to the 16-hit microcomputers that we
are involved in. So by havinq one compiler with a library
of code generators. anyone of them can be swapped in and out
at any time to retarget to a different machine. We achieve
total flexibility. Suppose we buy a new computer and target
to it, then we use it in an embedded system and we write
JOVIAL software for it. If in the next phase we realize
that there is a requirement for a faster computer with a
different architecture, instead of throwing out all of the
software, we'll swap in a new code generator and target to
the new machine. The software has not been changed in any
way. This does involve a standard compiler. I would like
to see this plan put into the DOD1 program.

[Cheatham, Bladen and others discuss the merits of
Bladen's proposal. Cheatham points out that adopting
such a method for compiler standardization shifts much of
the burden of compiler production and validation to the
code generator.

No firm conclusions are reached and the line of
discussion concludes with the following remarks by
P. Wegner.]

P. Wegner: I think that your problem is a technical one that
is very significant for languaqe control. As f~r as the
conference is concerned, we should prepare a statement of
the problem with what we see the solution to be, and
identify several of these technical problems -- perhaps
of language control -- and how they impact the language
control process.

[The general topic of discussion moves to the
relationship between language standardization and
validation. Several individuals suggest that there are
important relationships between the two areas. Cooper
indicates that another separate conference session is
devoted entirely to the issue of validation.

The following remarks by Luckham and Cooper summarize the
remaining scattered discussion.]

D. Luckham: I'm sure these topics about validating and
standard compilers will come up again, but I read this
paragraph 3.1 of the PEBBLEMAN as saying to minimize
changes to the language. Now, if anyone has been throuqh

24

the tour preliminary language designs, you can see an
abundance of new constructs. I think it is very unlikely
that by 1980 there will not be any new good ideas that
have not been incorporated in the languages -- some
obvious, provably good changes. It's quite clear that
you are going to get an evolution in this language
whether you like it not. So what is your procedure going
to be when somebody comes up with a reasonable
suggestion?

J. Cooper: Don't have any answers. That is what we are
trying to generate with Pebbleman.

D. Luckham: Then I would suggest that you'd better have a
board of experts, either killing the idea by showing how
the code is just as well without it, or else how to
compile it and update the compiler. Somewhere here there
has got to be the technical expert advising.

J. Cooper: We have had lots of interest in tools. In fact
99% of the interest in Pebbleman so far has been in
tools. The second most popular area is certification.
Nobody seems interested in the things that we were
supposed to talk about here in this session -- Sections
2, 3, 4 and so on. Yet the policy decisions that are
made in Sections 2, 3 and 4 are qoing to dictate what you
do in tools and validation, etc. They set the framework
for standard intermediate languages which you are going
to have to have. They set the stage for whether you even
have a root compiler or not. So ifl you feel strongly
about having a root compiler or standard intermediate
language, you really ought to provide inputs to the other
management and control sort of subjects.

25

Session 2A: Technology for Language Specification
Steve Crocker, Chair

S. Crocker: In Section 5.2 [of the preliminary PEBBLEMAN
docunaent] , under compiler validation, the second paragraph
says: "The method of validation should be to compile and
execute a standard series of programs written in the common
language to test for correct translation." This is not
strong enough. There has to be some provision for much
stronger types of analysis of the compiler and determination
of the compiler coverage of the language.

The most important step that can be taken in this area is to
insist on a formal and rigorous semantic definition of the
language. We all know that the techniques for formal
semantic specification of a language are not well developed,
and the few serious attempts have encountered various
troubles. But I am convinced that the attempts must be nadeanyway. I listed several reasons: [Crocker refers to a
prepared viewgraph.1

A formal semantic definition is a prerequisite for formal
verification. Even if the formal definition is hard to
read, a sufficient number of people will read it and
understand it. In particular, compiler writers will
understand it and base their implementati3n on such
understanding. It is quite likely that we'll learn how to
write readable -- even pleasing -- formal semantic
definitions. If we do learn how to write these things and
they are readaole, they may become the reference of choice
for both more users and compiler writers alike.

Finally, some reference documents are absolutely required,
and these reference documents must serve as the basis for
arbitration of differences of understanding that undoubtedly
will arise. So even if the English or other formal
documents were more readable, the formal documents provide a
better chance for eliminating ambiguities.

The focus of this section will be on: what are the
prospects for formal semantic dafinitions, how can we get
one, what the tools are, and what tools might relate to this
activity in the common high ordered language efforts.

D. Luckham: We'll just take a look at some of the techniques
now available for formally defining programming languages.
The first technique we'll look at is VDL, which is the
Vienna Definition Language. VDL was developed by ITM vienna
laboratories to provide a formal definition for PL/1. VDL
is based on a concept of an abstract machine. The
rethodology goes as follows: you take a source program and
translate it by means of an algorithm called a 'translator'
into an abstract program; this abstract program is then
executed on an abstract machine by means of an algorithm
called an 'interpreter.' The meaning of a program is defined
as the sequence of changes in the state of the machine as
that program is being executed.

26

One of the advantages of VDL is that you can provide
detailed information about the lanquaqe you are defininq
using this technique, and the abstract machine is an
intuitive method of emonstrating how the language works.
However, it is a nontrivial method to understand, and using
this abstract machine you might bring in extraneous detail
that could obscure some of the constructs of the language.
Also, the translator/interpreter mechanism is not
necessarily a distinct division in a programminq language at
all.

Another technique which was mentioned earlier is to use
W-gra,,mars. W-grammars are two-level grammars developed by
van Wijngaarden. They were used to formally define
ALGOL/68. W-grammars are not easy to understand. It is
possible to generate an infinite set of context free
productions by combining two sets of rules: hyper-rules and
meta-productions The combination of these two rules
generatively defines the set of legal programs in the
language.

S. Gerhart: How do you know what a program means in W-grammars?

D. Luckham: In the first phase, W-grammars can specify whether
a program is correct (i.e. legal) or not. The W-grammar
itself generates the set of all legal programs in the
language. To find out if a program is correct you have to
follow the grammar itself to see if that program could have
been generated by the W-grammar.

S. Crocker: The distinction is whether or not you have a valid
program, the one accepted by the definition of the language,
versus whether you know that it executes the way yot expect
it to execute -- the summary statement of what vour
expectation is. How do W-grammars specify what the output
is supposed to be from execution of the prog-am? no they do
that?

D. Luckham: Yes, they do I don't know that I can really
answer that quEstion.

tLuckham gives some sketchy details of W-grammar
meta-notions and hyper-notions, productions and rules.,

P. Wegner: This is the method for justifying the syntay not tl:e
interpreter. There is no interpreter associated with it.
The interpretation mechanism as a separate thing in the
ALGOL 68 report is given informally. It discusses now
things are elaborated.

D. Luckham: however, there are semantic issues that are taken
up in the definition of the language.

P. Wegner: Yes, for example the language takes care of the
relation between declaration and use of variables, if you
refer to those as semantic issues. But the actual execution
of the interpreter part of a VDL definition is not part of
the W-grammar formalism.

27

Using a W-grammar it is basically possible to do any Turing
machine computation, so you could specify anything you
wanted. However, the way they're used in the ALGOL 68
report is to specify the syntax down to excluding multiple
definitions of a variable in a blockhead, and making sure
that variables you defined are also used, and thiiiqs like
that. It specifies syntax down to a finer level than in the
ALGOL 60 report, but it does not handle interpretation at
all, although in principle it is possible.

D. Luckham: Some definitions have been created that do have the
interpretation. The ALGOL 68 definition may not, but it has
been done with W-grammars. The only advantage I see is with
the single formalism, you can understand what they're going
about. However, the technique is entirely generative and
you have to follow through all these rules to see if a
program is legal. It's not necessarily the case that you
can see if a program could not be generated in a languaqe,
and if there's no isolation of the context sensitive
requirements from the context free requirements in the
semantics, it's very hard to read.

[Luckham resumes his eiscussion of the various semantic
definition techniques.]

The third method is using attribute grammars. This is a
definitional technique was developed originally by Knuth and
used to formally define EULER. It is a context free grammar
where you associate the attributes with the nodes on the
derivation tree of grammar. Some set of attribute
evaluation rules are associated with all the productions or
semantic functions. One of the advantages of attribute
grammars is that they're easily understandable. However,
they're not a full technique because you must combine some
additional formulas to define the semantics of a language,
like denotational axioms, axiomatic semantics, or semantic
functions of some type. Some alternate methods include
production systems and Semanol, which will be discussed
later.

S. Crocker: One of the questions to keep in mind is: "How much
experience has there been with any of these techniques and
what are the prospects for actually using formal semantic
definition systems in a practical way?"

P. Wegner: One related item is there's been a PASCAL definition
which is not totally formal, and then FUCLID, and then
various other definitions along those lines. The TRONMANJ
and STEELMAN are oriented towards that style of def.nition.
It's quite true that the PASCAL definition, as such, is
incomplete and leaves lots of holes, but it may well he that
the direction to qo is to t.qhten up somethinq like the
PASCAL definition and make it seml-formal (more formal than
it is now). ithat might be the style of definition more
appropriate to T)ODl.

[E. Nelson now gives a detailed presentation of the
Semanol system which is described in his position paper.
He concludes his presentation with the following

28

proposal.)I

I propose that a standard definition would be comprised of
four elements: a Semanol specification, an axiomatic
specification provied by the contractor, a reference manual
defining the language in English,, consistent with the
other two, and the compiler validation test cases.

W. Loper: I have a question about forms of parallelism.

E. Nelson: The DOD common language requirements requires
handling parallelism. These are admittedly new types of
language features which are not present in previous designs.
Looking into things like monitors and boxes, as described in
these preliminary designs, it would appear that Semanol has
the facilities to deal with them. It might turn out that
you would want to define some new high-level concept in
there to make it easier to describe, and there will have to
be some work in detailed modeling of what the language
designers actually produce. We believe it is a solvable
problem.

S. Gerhart: How about a fifth component to your
standardization? A proof of consistency between the
axiomatic and Semanol specifications.

E. Nelson: Yes. I'm~ not sure whether we know how we'll find
complete formal consistency, but there are probably a number
of tests that can be applied to check the consistencies of
these two definitions.

S. Crocker: Why are two formal definitions requiired?

E. Nelson: In principle, you would need only one. The
axiomatic specification which is being produced is not
adequate because it is incomplete. Tt only covers a portion
of the language. Having the two of them we think,
particularly in a language as important as this, does help
in checking the consistency and provides a different way of
testing andi using it. We believe the axiomatic definition,
although incomplete, is useful in itself, one reason being
its relation to current formal verification methodology.

S. Crocker: This leaves me a little uneasy if you say it's
incomplete but consistent with the executable Semanol. What
can you verify if it is incomplete? Why can't you derive
those axioms?

E. Nelson: The incompleteness of the axiomatic specification
does inean that the formal verification technology is not as
solidly grounded as people imply that it is. It means that
they are dealing at best with some kind of partial proofs of
correctness because they have incompletely covered all
definitions. That doesn't mean ir- isn't useful.

S. Gerhart: in fact, the axiomatic specification is only a
part. There's also the identification of datatypes,
considered as somewhat of a separate definitional mechanism.
It's more than two definitions that you're talking about.

29

Operational versus some other kind seems to be the main
distinction.

P. Wegner: Which definition would you go to if you had to
decide whether a certain language feature was correct? The
Semanol definition?

E. Nelson: I probably would do to Semanol because I'm more
familiar with it.

S. Crocker: What do you mean when you say that a language
construct is correct? Do you mean the compiler is right, or
do you mean the user was using the language feature
correctly. There has to be one meaning, there can't be
several.

E. Nelson: If they disagree, then of course they are
inconsistent zid you may want to resolve the inconsistency.

P. Wegner: If we have these several layers of definition, then
what will happen in practice is that, and this is good, when
people have a problem concerning the language they will
probably go to the English definition first. And if it can
be answered at that level, fine, and mostly it will he able
to. Hopefully, one of the reasons for havinq the more
formal definition is to get the English definition right.
And, hopefully the English definition will be sufficient
for most purposes. In practice, the English definition is
going to be crucial to everything, and that's why I prefer
it in the PASCAL style probably. What we're really working
at is to get a good and complete English definition. In a
sense, the formal Semanol definition and the axiomatic
definition are, too, to get a better English definition.

One further point concerning your comment and discussion:
what you're really saying is that in the class of things
that are more like operational definitions, you include
Semanol and VDL and so on. Semanol may well be the best way
to go, as far as that is concerned. The other point is that
several complementary definitions are probably the way to
go.

S. Crocker: A couple of questions about the experience you've
had with Semanol. How big do these definitions turn out to
be, how much effort do they take? How come it hasn't spread
like wildfire across the landscape?

E. Nelson: Here is a copy of the JOVIAL .73 Semanol
specification. It is not very densely packed. NAlson
displays a document of a dozen or so pages.]

S. CrocKer: How big is the English spec'

Col. Whitaker: The natural language definition from which the
Semanol specification was developed is about six or seven
pages. It is smaller print and it is double columns.

I would like to back up what Dr. Nelson has said. We have
found it (the Semanol definition] to be a ver,, useful tool

30

in debugging the language specification itself. It kind of
backs up what Peter was saying. In talking to the British
about their experiences with Coral 66, they did undertake a
formal definition of that language. The problem they ran
into was that the people they had to approve it couldn't
read it. I think we do have to stick with the natural
language definition. It's the standard as far as we can
take it because right now, I think, the state-of-the-art,
even Semanol, is a lot of work to read. If you want to look
up something like the example he gave, you want to finO out
exactly how loops work, for example, you have to look
somewhere else which in turn will refer you to something
else. The information is there, but it is a lot of work to
get it out.

S. Crocker: What are the prospects for bringinq those two
things into conjunction so that the formal spec is a
readable, even pleasing, reference document?

E. Nelson: I would say you'd have to start with the natural
language specification, then work to the formal
specification. Where problems are encountered, well it's
going to be a matter of editing natural language
specifications and resolving the problem where it's
identified.

S. Crocker: I'd like to provoke some discussion on the point
that Peter raised about a semi-formal specification being
the most natural resting point. I'm fairly enamored of the
idea of being able to take a formal definition and do
several things with it. Execute it for one thing, just to
see what candidate programs are going to do. input to
formal verification systems at one point is another kind of
thing. Using it as a top-level spec for compiler
development, either as a target for verification of an
implementation of a compiler, or as a starting point in
automatic design of a compiler by successive
transformations. Contrary points of view?

P. Wegner: I think that maybe we ouqht to take the position
that the English definition should be the first recourse and
possibly even the final arbiter. That's not to say that a
formal definition isn't very useful. It should even be
required and used for testing our programs. I qo with the
idea that you have both and require both. The English
definition is the arbiter and the formal definition is there
for validating things as well.

W. Loper: I don't think it's enough. I've had two experiences
of being among the first to implement a compiler for a newly
defined language. In one case, we had to implement FORTRAN
IV to obey a public standard, not an IBM standard. In the
second case, I was perhaps among the first to try to
implement PL/l. In implementing PL/l, even after they had
completely written their final language specification
documents, that was so far from supplying guidance to the
implementation that I have a section of a filing cabinet
devoted to the subsequent correspondence to find our what in
the world they meant when they had written what would

31

normally be accepted as a complete and finished languaqe
specification.

Later it became easier (this had been hack in 196) because
the questions had been settled. Two reasons: one, you had
a tradition. Everyone knew by that time that when a
language said X it really meant Y, so there was no Problem.
There are things that in reading the FORTRAN definition you
stumble over without realizing that it simply doesn't settle
the issues. You have to know from long experience how the
issues have been settled.

E. Nelson: I'd like to talk on both sides of the question. On
the one hand, this anbiguity in the English is a very real
problem. As you said, the way English specs are usually
written probably would not provide guidance to many issues.
If you do an iteration, starting from the English definition
to a formal definition which is precise, then go back and
rewrite the English definition, now knowing exactly what it
means, then you can remove a lot of ambiguity you couldn't
resolve in the first place in English. English being itself
not a formally defined language, you may still not be free
of ambiguities. While it may be the arbiter of most cases,
there might be ones where you'd have to go back and read the
formal spec and say this is what it really precisely does.

P. Wegner: I think I now agree. The formal definition should
be the arbiter, but that it's understood that the English
definition is as complete as possible and that in 95% of the
cases, that will he the one that is accepted.

V. Sneider: My own opinion is that any definition of a
programming language ought to be a top down definition.
Where you look at the very top-most level of the semantics
and use highly abbreviated and symbolic notation at the top
which conveys what's happening without giving the details.
If you want the details, then you look it up in the manual
under the section which gives the specific actions that are
going on at this level of the translation or interpretation
process. That's not inconsistent with using English at the
top most level and referring you to details with this or
that section of the further report. I don't see why a
person is supposed to comprehend everything that's going on
from top to bottom in the translation process when he just
wants to get some vague idea of where things are headed.

S. Crocker: I think you're raising a subtle but extremely
important issue that pervades all requirements
specifications. That has to do with how VOL focus on
essential or normative cases as opposed to all of the myriad
of details, many parts of which have to do with boundary
cases and error conditions which are not what a user wants
to find out about upor. first reading. It would seem to me
that one of the things we trip across when we try to write
formal definitions of a compiler or languages is we haven't
found a way to bring out the core of what we're trying to
specify in an easy to read and focused way, and still have
connection with all the myriad of details that must go into
a full formal specification. Does anybody want to talk

32

about the SI work? It is the only work I know of that
mentions that kind of issue.

A. Marmor-Squires: Are you talking about "Special?' (yes.)
Special, as I understand it, is not purposely designed to
define programming languages, but to provide a high-level
non-procedural definition of programming.

S. Crocker: True, and I meant to point to it only as an example
of a specification language which has as its attribute that
it separates normal behavior from error behavior, not that
it's a language specification system. That's an attribute
(separation) that we may want to have in a formal semantic
definition system for languages, which would speak to some
of these issues about how biq the spec is and how much time
it takes to read it and who's going to read it, who's going
to understand it, and hence, what its ultimate effect is
going to he on the community at large.

P. Wegner: Suppose we choose a certain definition style. We
can still write good and bad definitions in that style, and
one of the things that Victor was referring to is that the
definition should be structured in some way, top down, for
example. I'm sure that there is a greal deal to be learned
in writing definitions well in any notation we care to use.

S. Crocker: How much experience has there oeen with formal
definitions?

V. Schneider: I don't know anybody who really has an absolute,
water-tight formal specification of what a compiler is doing
anid what its runtime support system is doing at the same
time. That may be too strong, and it may not even be
humanly possible. There might be someone who could prove
that it really isn't possible to give a water-tight complete
definition. The question then is, do you want perfection or
do you want something people can use? What is it that
people can use? I'm proposing the top down structure
definition of the language.

S. Crocker: One of the driving forces is whether you can move
software that's written in a language from one machine to
another machine after you recompile it. 4ow much damage
have you done? Two kinds of answers: either you're
prepared for no damage at all, in which case you have to
have a water-tight system; or you have to he prepared for
some and then it's a question of how much, and we get into
the usual haggle. So you have to go back through some
testing and validation. That comes back to some policy
issues about whether we're going to manage our way out of it
or whether we're going to have some guarantees. So it's a
question of how close we can come and if it's close enough.

D. Luckha 1: A small comment on the amount of experience with
formal definitions. There is no experience with formal
definition of parallel process i-ng. All parallel processing
languages I've seen have no formal definition.

P. Wegner: It would seem to me that on concurrent processing

33

there are no insuperable difficulties of extending
operational techniques to concurrent processing. A little
bit extra will have to he done with synchronization. qome
extension of axiomatic techniques has been done.

D. Luckham: I'm not saying that there are any insuperable
difficulties, I'm saying that the experience I've seen is
zero.

S. Crocker: How much experience has there been with validating
compiler construction?

R. Morris: It's alleged that COROL's fully validated, but I
don't know anything about how it works. Col. Whitaker
mentioned this morning that the COBOL people have done it.

Col. Whitaker: The compiler construction is not validated. The
compiler is validated by some 350 plus test programs,
specifically designed for that purpose.

E. Nelson: Having had this discussion concerning COBOL and its
validation system, there continue to be many arguments over
the ambiguities of interpretation of correspondence on that
area. It isn't 100% decided, there are other things, such
as a Semanol specification of COBOL, as a step toward a
better standard.

P. Wegner: Are you looking for a ,emanol specification for DODI
languages?

R. Nelson: We've been doing some studies on it.

S. DiNitto: We've talked to our lab director about sponsoring a
Semanol definition of DODI. We can't go the full route. I
doubt if we'll have the funds to do the build-up of the
translator and interpreter so that it will handle nOT)I. But
we still think it will be valuable to debug the
specification, just by undertaking the definition.

S. Crocker: There's a small subtlety which you've just raised
about building up the translator and interpreter to handle
the extensions to the Semanol language to handle DODI.

E. Nelson: In resolving the questions relative to
specifications there's a question of how much one wants to
describe in high-level terms and how much in low-level,
which compounds the detail in there. For parallelism and
certain other advanced features, there may be for
readability and execution purposes some operators in the
language that directly mean this rather than describing it
in terms of how you manipulate strings.

S. Crocker: Give some further indication of how much extension
to Semanol you'd find useful in describing a language as
rich as P)OD1.

E. Nelson: I don't think there'd be very much of an extension.

S. Crocker: How many people here are involved in compiler

L k

34

construction in one way oL another? [Hands are raised.]
About a quarter, a third.

E. Nelson: With this number of compiler writers here I'a
stirprised that there hasn't been raised the usual compiler
wrlters cou"laint that formal definitions over-constrain

A. Garjaro: I have a question for Dr. Nelson. Hias TRW looked
at Semanol for defining COBOL?

E. Nelson: People have looked at it, and believe it is do-able,
though it has not been done. If you talk to us a year from
now we may have it done. The various data structures, table
structures, picture-spec, etc., are different than in other
languages. They don't seem to raise any insuperable
questions in describing them in the right amount of detail
and reaching agreement on what they mean.

S. Gerhart: Is there sufficient mathematical theory to support
any sort of formal definition of parallel processing? Over
the years a theory has built up that at least makes the
definition more believable.

D. Luckham: First of all, I don't know the answer to that, to
be honest with you. I can tell you what I think at the
moment, which is not necessarily going to be true tomorrow.
Yes, I think there is enough mathematical technique to
develop a specification language for parallel processing.
The first thing that has to be decided is what people want
to say about the processes. It seems to me that the old I/O
specs that would do for procedures no longer do for parallel
processes. Naturally, when you get into a language in which
you're talking about infinite streams of flow of
information, the mathematics of that is problematic, but
solvable. If you have two processes accessing the same
input channel then you get into the mathematics of shuffling
operations or subsequences, though you don't know in what
order the accesses will occur. The mathematics of that is
solvable although in some studies it was ignored.

There is a second line of problems which has to do with
synchronization, which is separable from the flow of
information. Most well-written operating systems tackle the
problem. The formalization of synchronization proble.s may
depend on very precise programming techniques. My feeling1
about the question is, yes, the mathematical techniques to
solve the problems exist. It's a question of what people
will accept as standard specifications for processes. Or we
can decide what languages we'll use as a standard.

P. Wegner: This is in the area in which you're working?
[Right.] So you are in fact developing techniques forspecifying modules and concurrent processes.

D. Luckham: What I would claim to be able to produce in the

near future is something that would be adequate for very,
very simple kinds of processes, the ones you would see in a
simple kind of operating system. It is not for the sort of

35

processes that might evaluate a numerical analysis problem
in some very efficient way.

P. Wegner: How do you feel about axiomatic definition of nO'].?
flow complete could it he within a two or three year time
period?

1). Luckham: I 6on't know. Mo . The desiins weren't specific,
you know. I can tell you where the prni'hlems wou1H he, or
some of the problems I don't know how to solve. I don't
have a full enough picture to give you a complete axiomatic
definition.

S. Crocker: From some of the other compiler writers, what is
your preference for specification of a new language?

-: Clarity. You spend more time on trying to figure out
difficult issues that haven't been clearly settled than you
do in implementing the ones that have. Only a minority of
my time is spent in implementing the things I understood,
after I found out a little about them.

S. Crocker: What do you think of the idea of a reference
compiler? One whose sole purpose is to provide an
operational model of the machine rather than one that's
aimed at efficiency or target code production. Perhaps a
reference interpreter is the right idea?

1). Luckhao: It would not be extremely valuable. I would much
rather do a program. It's quite clear that if it's written
down, you can follow the source code of the compiler or even
the bit pattern that is executed.

E. Nelson: In the development of the University rM' -?, they
were developing a compiler at the same time we were writing
the Semanol specification, and we had meetings to resolve
issues and found those most productive. The compiler
writers managed to illuminate several issues for us. We
resolved questions so that what they wrote down on the
compiler spec and what we wrote on the Semanol spec were
consistent.

D. Luckaham: I'm curious about the reference compiler. We're
talking about some formal definition which hopefully is as
unambiguous as you can have. Of the methods of definition,
1 would think Semanol could write answers in the same way as
any particulac program could provide answers. The idea that
a man would go to a piece of paper as you referred to it, is
usually a lot more practical than running through a
particular compiler you happen to have. Having the compiler
should be ,nore of a solution than having a formal definition
that has been agreed upon. uopefully, you can look at that
formal definition and imply the answers.

S. Crocker: Why even use Semanol when you have hoth?

D. Luckham: That's a good point. If the technique isn't able
to be executed, you may have a more difficult time proving
that it is clear.

36

S. Crocker: So one might see Semanol as a lanquage for writing
language comi1pilers.

E. Nelson: What a formal definition can really be looked at is
the compiler that doesn't provide you with any extra
infotmation. That is, compiling for a machine or in an
environmeat that discusses only those semantic issues you
want to address.

P. Wegner: It's an evaluator, really, rather than a compiler.
The compiling aspect is somewhat irrelevant.

------: flow do you pose a question to the reference compiler?

P. Wegner: You pose questions about what a program does rather
than about what a program compiles into.

S. Crocker: So you really want the reference interpreter?

A. Evans: Vr)L does that. Not so usefully pernaps, but VDL
provides you that mechanism.

S. Crocker: What is it that makes VIL not so useful?

A. Evans: It takes a long time to answer any reasonably hard
problem. To submit a piece of program to VT)L and work it
through by hand would be a very time consuming operation.

P. Wegner: I think VDL and Semanol are competitors for a formal
definition mechanism. We could go with Semanol rather than
VDL because Semanol is more recent. Are there any other
competitors for this kind of definition? Namely, an
interpreter which is also implemented so you could run
things through it. If VDL were implemented you could run
things through VDL.

E. Nelson: The problem with VDL is that they have the different
sections on what they call the concrete syntax, abstract
representation of the concrete syntax, the abstract syntax
and the abstract machine. They tend to be of quite
different notation and in most cases people have not done
all of the sections of VDL. Most usually leave out the
abstract representation of the concrete syntax. Also, the
abstract machine is unlike the Semanol interpreter. It
actually holds part of the language definition anti so you
have a different abstract machine for every language.

D. Luckham: I just want to make a point about compilation
versus evaluation. We've been doing some stuff with
attribute grammars. With that point of view. you're
compiling a mathematical function, if you look at it as a
function of the top node of the program. I think we should
make clear whether we're trying to come up with an abstract
machine as a series of state transformations and if we're
really trying to say something about these particular
states or whether we're considering the procedure as a
mathematical function.

E. Nelson: I think that latter point is important and also one

37

of the features that Semanol is based on, a theory of
semantics, whereas, VDL gives the ultimate interpretation on
how it executes in terms of the machine. The proqrammer is
concerned with describing an information problem ann the
programming language ought to have something to do with
describing information problems.

38

Session 3A: Verification Technology-Present and Future
David Luckham, Chair

D. Luckham: The first thing I want to say is that there seems
to be a strong image of verifiers as a black box into which
the programmer will put a 20,000 page FORTRAN listing with
just an I/O specification and out will come "true". Such a
black box will never happen. My view of verification
involves many of the aspects that will be going on in the
other sessions. Programming language design is an intimate,
important part, as is the design of specification languages
and the design of a methodology for documentation.

[Luckham refers now to an overhead projector slide
containing five points which~ illustrate the relationship
of verification technology to some important related
areas.]J

We need to give the programmer the following items: 1) the
tools to write a program, 2) the tools to state his
intentions, 3) the techniques for stating specifications, 4I)
the theory of how he will establish consistency between code
and specifications, and 5) a system to help him automate
certain aspects of the proof.

Euclid is an example of a programming language design
specifically oriented towards making the task of validating
programs easier. Whether it was a good decision or not, I
don't know. The introduction of typing in the language,
which came a little earlier, is a perfect example of forcing
the programmer to declare his intentions. It turns out that
he declares a lot more when he makes his type definitions
than is checkable by the standard compilers, and so we can
still design verifiers to use that information to check
further what is normally checked at runtime. I believe that
language design is going to tend towards the direction of
more of these non-computation declarations of intentions.I
can see that already, for example, in the Green design.

For specification language design, there are a couple of
things to note. If you want to talk about a database
program for example, you might want to have a language in
which you defined a concept like "cycle-free", tree
structures of records, the concepts of searching and
manipulating such structures, etc. You could then imagine
in the specifications of your program that it would be
natural for you to write down something like "the tree
structure is loop-free." And so one wants to get the
programmer a language in which he can talk about his "higher
level" concepts. One has to design this. One has to design
the means for allowing the program to design its own
specification. Another example would be the language of
model logic. If one is talking about specification of
synchronization problems in operating systems, it becomes
convenient to be able to say "if this happens here, then
it's necessary at some time later that some other event will

39

happen"; "if this process signals that then at some future
time something else will happen"; "if this process waits
for that resource then it will get the signal that that
resource is free." There is now an expanding theory of the
old tense logics in a new light, in the light of
specifications.

Examples of documentation requirements are things like:
what are you going to have to say about a global variable?
In a lot of programming languages, you don't have to say
anything, you just declare it some place at the top and a
few blocks later you use it. For a verifier, you have to
declare it at the point where you use it as a global.
Another example would be: should there be a standard
whereby you have to understand what an invariant for a
searching loop is? Should you have to provide one for every
loop? Should that be a documentation point? These are
examples of what I mean by requirements and methods being
part of the technology of verification.

Now, I will say a little about my own program; it is sort
of a test case. I look at the verifier as just one kind of
program analyzer. Its particular property is that it
analyzes the consistency of the code with the documentation.
I'm making a rather fuzzy distinction between the word
specification and documentation. A specification language
is one in which the documentation is stated; a program
specification is sort of the global external intent of the
program. In the case of a procedure it would be the
entry/exit assertions. The documentation is the program
specification of all the other internal assertions you might
make to explain what's going on internally. In other words,
if in your language you use the concept "loop-free", then at
the current state of rudimentary verifiers you have to
explain to the verifier what the definition of "loop-free"
is. The definition of the specification language is just4
the semantics of the concepts in that language. If you were
dealing with sort programs, for example, then you would use
concepts like "permutation", "ordinate range", "preserved in
the range", "greatest element in the range", "least element
in the range", etc. You would actually mathematically
explain each of those concepts. Then your specification
language would be a language in which those concepts exist.
You have to give the definition of concepts to the verifier.

In order to do this analysis, we require that a program be
documented and we require a definition of the specification.
Given all of those things, the outputs from the verifier are
either a proof, in some logic, that the code is consistent
with its specifications and documentation, or that it's not
consistent and you get back some hint as to where the
problem is. You also get back the unprogrammed parts of the
logical conditions and the trace of where the proof attempt
failed. It's this information that is really most important
in developing applications of verifiers, because it's this
that is going to allow us to decide where the problems lie
in the consistency, and which part of the documentation is
not adequate or where there might be a bug in the code. So,

40

one of the things that we have to do in verification
technology is develop tools for analyzing the failure of
attempts to verify.

At the present time we are at a very elementary stage in
this technology. I'm not even sure we have the right logic
of programs, but I know that we've got a good enough
language of the logic of programs that we can do quite a few
things. We might be like the Greeks, with the concept of
infinitesimals and no real notation. We need the axiomatic
semantics of the programming language as a pre-requisite for
building the verifier. We need "correct" definitions of the
higher-level concepts in the specification language. This
is so, for example, if you wanted to use loop-freeness as a
concept, you would define it by means of axioms, and then
you would have to go away and think as to whether your
definition really meant loop-free. We also require that the
program be documented. These are the prerequisites.

P. Wegner: When you say documentation, you mean something
fairly formal? Presumably, the documentation has to be
written according to certain rules rather than just free
format.

D. Luckham: Yes, I mean part of the technology is that you have
to lay down documentation methods.

P. Wegner: Could there be a documentation language?

D. Luckham: There would be a language in which you could define
your own specification range. In other words, if you've got
a parser, you're going to want to write a different kind of
specification from a sorting program.

P. Wegner: I'm talking about the documentation. If the
documentation is required for the verification, then you're
going to impose some pretty stringent requirements on what
form the documentation can take.

D. Luckham: I'm going to negotiate with you. If you're a
programmer and you don't like my requirements then I'm going
to try to program my verifier around them. It's up to us to
decide what we can both live with in the way of
documentation methods.

P. Wegner: But the thing we agree on would be something fairly
formal.

D. Luckham: Yes. For methodology, you must have something here
if you expect to get any reasonable answer. So here are
some of the uses of verifiers. The first is, in making the
documentation more precise, you can't get away with sloppy
English and you can't get away with saying "this loop is
supposed to do that" and forget all the end conditions, and
so on. The first thing that happens when you get into this
game is that you have to design rather precise specification
languages and documentation methods. I think that is a
coming discipline. In the future, there will be much more

41

rigorous standards for declaring intention.

Having gotten the program, the documentation, the definition
of' the specification language, and the verifier, the next
use is in debugging. That is why failure in verifying gives
you information about where the inconsi stene iv.; are. TIf t hie
V (a:;oii why youj di dn' t ,,,(t a ver ifical i ou wi:;u~ii2 te
documentation wasn't adequate, then the system Corces you t~o
improve your documentation. Also, if' you are following a
top down methodology of programming, and you've left certain
subprocedures external and unspecified, then you'll probably
find that verifying the top-level forces you to change or
modify the specifications on the unwritten code.

Finally, when you get a verification you get a verification
of what you stated. When people say "we've verified an
operating system", or "we've verified a compiler", or
something like that, what happens here is they have a
precise statement of what they verified about a program.
They haven't verified a compiler, they've verified that it
does some particular kind of transformation. They haven't
verified an operating system, they've verified that if
blocking and starvation don't happen, then the flow of
information from the card reader to the line printer will be
as they want it.

I think that nothing will ever be absolutely verified. What
you're doing is raising the level of confidence, and you're
being rather precise about what you have confidence in.
Finally, once you have a verification, that isn't the end of
the game. That's just the beginning. Especially if you're
working with code that you expect to modify, or
specifications that you expect to undergo some modification
in the future. You now have a perfect tool for playing with
what happens when you make small changes. What we're trying
to do here is develop techniques for using and for
programming with such a verifier.

R. Balzer: Are you referring to your project or this meeting?

D. Luckham: My project. I'm trying to convince you that this
is a much more fruitful way'to go. There's been a lot of
work on sorting programs, we seem now to have a reasonable
specification language with about half a dozen primitive
concepts in it. It is satisfactory for documenting and
verifying most published sorting algorithms, including
versions of heap sort. For pointer manipulation programs we
are able to deal with things like the Shore-Waite marking
algorithm for garbage collection, various kinds of list
processing, single queuing systems.

Back to the type definitions. We have implemented a special
version of this verifier which attempts to prove the absence
of common runtime errors. What it has to do is build up its
own, documentation, so it contains an analysis phase which
attempts to construct assertions about arithmetical facts.
Those arithmetical facts imply the absence of certain kinds
of runtime errors and then it attempts to prove the

42

consistency and if so, the outcome would be you know that
you would not get an array subscript going out of bounds at
runtime; you would not get the access of an uninitialized
variable or a variable with an undefined value; you would
not get referencing of a null pointer; you wouldn't get a
stack overflow in a recursion; you wouldn't get division by
0. It's like an automatic documenter for those programs for
which it is successful. That is, you don't have to supply
any documentation at all for the kinds of programs for which
you are now still required to supply some documentation.

[Unknown]: What do you mean by an automatic documenter?

D. Luckham: Well, imagine that you just have a task error code
and you have no documentation about what the code is
supposed to do. What the automatic documenter does is
attempt to build up documentation at certain points in the

[Unknown]: What does it provide you with?

D. Luckham: It will provide you with assertions to the effectI that certain a variable is not zero, or something like that.

J. Prescott: In your formal specification languages, do you
find it necessary to come up with a specification language
for each type of programming, like sort programming, or do
you have one specification language?

D. Luckham: What we have right now is a language in which you
can design your own specification. Basically, we have one
specification language, but it allows you to define more
concepts, to axiomatize more concepts. It's like a
predicate logic in which you could define arithmetic or
something like that. You could define the theory of
sorting, the theory of database management, etc. I don't
wish to defend it as anything more than a rather rudimentary
specification.

In order to build a system like this, I can name for you
some support technology. This has to do with the
implementation of special purpose theorem provers and
algebraic simplifiers. For example, if you're dealing with
a programming language which has standard data structures
such as arrays or pointers or files or lists, then you'll
probably find that you need to have a special purpose
theorem prover for each of these standard data structures.
And so there is a support technology in the design of those
theorem proving algorithms.

The next thing that happens is you find that each of these
special proving boxes have to cooperate very e'fficiently
because they influence each other. Something that the array
prover finds out may be of importance to something that the
arithmetical prover wants to know, so they have to cooperate
and they have to pool their knowledge. This gets you into a
concept of' cooperating special purpose boxes, and the theory
of how you design boxes. Finally, you have the design of

43

the specification language, which here I've called the proof
rule language.

Down at the bottom of all of this are various classical
problems that also require solution of some sort for such a
verifier to run in real time. We need to improve certain
strategies, such as garbage collection. We need to work on
printing formats which eliminate common sub-expressions or
don't allow them to occur in the first place. Only just
last week by going from the MACLISP garbage collection to
our own garbage collector, we improved our runtime
efficiency, in fact, we doubled it. There's a lot of work
to be done on the strategies of when you collect garbage and
where you go to look for it.

A few facts about the actual system. It's a PDP-1O MACLISP
system of lOOK PDP-1O words. There is a user manual we're
writing now, and we're attempting to distribute it to a few
selected ARPA sites because we think we're now at a stage
where we can give it to other users without causing too much
ill-will. We would like the feedback. The major problem in
transferring it across the ARPA network is the character set
compatibility.

[A brief discussion on chaiacter set compatibility
ensues. Crocker observes that Luckham's problem can
probably best be worked out by Luckham.]

D. Luckham: The language accepted by the verifier at the moment
is an extension of PASCAL and includes union types instead
of variant records and also modules. We're working on a
theory, starting from scratch, writing a compiler and
working up the structure it should have so that we can
specify it, and verify some properties of it. We're doing
this for a mini-PASCAL compiler that includes gotos,
iterative loops, procedure calls, block structure, and
arrays, but not pointers. Operating system verification is
something that I've gotten interested in and it requires a
study of all of the problems I mentioned on the first slide,
i.e., language design, specification languages for
concurrency, etc.

[Unknown): What about runtime error checking?

D. Luckham: We're certainly trying to extend that and look at
the sort of runtime errors one will get into with, say,
union types and module interfaces. I think now, my own
evaluation of this project is that we're at the point where
we would like to try to do an in-depth study of a PASCAL
applications package. I would like a database package. We
would like to take a group of between 15 and 50 programs
from some place else and see what we can do to develop the
specification language for them, develop programming
methodology for them, debug them and verify them using the
system.

R. Balzer: You're saying that you believe your system, when
operated by the developers, that is people who are experts,

44

is capable of handling an existing package of PASCAL
programs.

D. Luckham: No, I'm not saying we can take existing user
programs from other places and drop them in the top and get
answers out the bottom. I'm saying that we're about ready
to start looking at "can we restructure these programs,
develop the specification language, develop the methods of
documentation, document the restructured programs, and then

R. Balzer: So, in other words, you're saying that it's capable
of verifying real applications when they are done with the
right technology.

D. Luckham: I'm ready to try doing it.

V. Schneider: I have two topics that you didn't address. One
of them is the use of exercisers for verificat-ion. In
particular, there was a recent paper in the Communications
of the ACM on the subject of proving that test cases are
sufficient for testing error-freeness of the program. I
don't know if you have any comments about that.

Second, there are some theories at the present, I won't call
them anything more, about the information theoretic
structure of programs. There's one by Gregory Chatin of New
York University, for example. Another theory was originated
by Maurey Halstead of Purdue University. The theory goes as
follows. When you get past a certain point of complexity,
you have a chance for an error. If you carry this theory
forward, you can predict the number of errors remaining in
the program after delivery as a function of the number of
errors found during the production process and the size of
the program. It seems to me that that is part of the
verification process. At least disprovin- that theory is
part of the verification process, or possibly using it in
some productive way.

D. Luckham: I believe that the theory, as you have explained
it, is quite true. Let me deal with the first point and
then the second. I have not read this ACM paper, but some
of my students did, and they went so far as to rigorously
specify and verify the example programs in that paper in
about half an hour, from start to finish using my method.
And I think they might even write a letter to the editor
about it. This is the paper on verification by complete
testing. I'm not saying you shouldn't use test cases, I'm
saying use anything you can get your hands on. What this
does is zero in on where your problems are.

Now, as to your second point, it's quite true that when you
write a messy program you have a hard time specifying it.
In fact, the specifications tend to look about the same as
the program. You have a much harder time verifying it.

R. Balzer: The theory about the number of errors predicts that
when you increase the size of each procedure or each task,

45

you're programming beyond a certain point and yolu're going
to have errors in it. The whole idea is to break things
down into manageable pieces. The theory says that this is
the best way to do it.

D. Luckham: Great. Now we've got this nice new module
construct in the language and we'd like to understand how'to
use it to break programs down without necessarily making
them less efficient in runtime. For example, I have a
benchmark program from CDC used to test their PASCAL
compiler software. It computes the youngest uncle of a
person from a database of people. Dave Fisher made the
point last night that really the problem is not runtime
speed but memory space. That's the sort of thing that would
happen with an applications package from an outside source.

J. Cross: Suppose we imagine your whole system to be
implemented for the common language. And suppose you give
this system a program to be verified, and the system works
for a while and then comes up with all sorts of information
such as "this variable cannot be accessed until it is
initialized." Such information is obviously of great
interest to the compiler which is trying to emit good code.
Do you have any proposals about how your tools could
communicate that information to the compiler?

D. Luckham: No, I don't. We are starting to implement the
language that we have now. In other words, when you give a
program to a verifier you go through the first ten percent
or fifty percent of the compiler, namely scanner, parser, to
an internal format. Now the code generator can use that
just as easily as the verifier. What we have to do to go
from a verification to a compiled run is to write the code
generator. That's what we're going to do. Then we're going
to try to research the issue of how we might alternate
between code and influence the code generated by the code
generator. Right now I have just not thought about that.
My students may in fact be further ahead on that than I am.

S. Gerhart: It seems like it might be time to forget the notion
of a compiler, or to revise the notion of a compiler.
There are lots of things you can do with programs that can
be considered verification, optimization and so forth. It
might be worthwhile sometime in the future, in the context
of this environment, to go through a series of tools, see
where they overlap, see where they might be partitioned up
into a finer set of tools that when combined back give the
components we're used to seeing like verifiers and
compilers, but, in fact, overall achieve a much greater
effect. Someone brought this up yesterday; the front end
of a commmon language should be shared among various tools.
The point I want to make is, simply, there's a lot of
fuzziness in the notion of the compiler and the verifier,
and we ought to think about what the terms might be to be
revised to be.

D. Luckham: I tried in a recent paper to talk about the runtimeerror checking version as sort of a compiletime

46

verification. My coauthors forced me to take it out because
compilers don't normally do this and it would confuse tne
readers as to what I meant by compiletime verification. I
agree with you, I tried to do it.

S. Gerhart: Transformation is a goud example of something that
would be highly useful in a context of verification. You
can prove a program correct and then transform 't,
preserving the correctness, to another correct program.
That might be the sort of thing that fits into a compiler or
a separate component. It's very fuzzy.

D. Luckham: On that point, I don't wish to adhere to this
particular verifier design as something that's going to
persist in the future. I think starting from very high
level specifications and gradually transforming them into
code that some system understands might be a fruitful line
of attack.

R. Glass : I'm a little disturbed. I see an enormous dichotomy
between what we've talked about so far and my perception of
verification as it currently exists in the greater computer
community. My characterization of what currently exists is
that we tend to be using the worst of the late 1950's
technology to verify a computer system. We're so far from
the technology that we've discussed here that I'm not sure
it's achievable from where we stand without combining some
intermediate steps. I guess I'd like to challenge this
group to help find those steps.

J. Bladen: I'd like to add to that with a question. Are you
saying that you have the technology at the present time to
prove a scanner/parser version of DODI where we could say
that this root compiler is a proven piece of software and we
can predict its characteristics? Is that available within
the scope of DODI?

D. Luckham: What we have done is verify some standard
properties of the scanner and parser for a PASCAL compiler.
Now, what that would mean would be that it should not be too
difficult to do the same thing for the scanner and parser
for DODI.

J. Bladen: One of the hangups the Air Force has on a standard
compiler is inability of proving the compiler itself. If we
can get some sort of indication that we can prove a
compiler, then there's a strong possibility of changing the
whole way of doing business within the Air Force.

S. Crocker: I don't understand. You're saying that the Air
Force doesn't want to use higher-order languages because
they can't verify the compilers with them?

[No reply.]

S. Di Nitto: One criticism that is made of these higher order
languages is that people cannot get as close to the machine
as they could with assembly language Not only is your

47

program logic a possible source of error, but your compiler
can do something to screw up the language along the way.
There's this mistrust of the compiler. The point Jim Bladen
was trying to make is that it would be great if we could
have something that would certify that this compiler
produces 100% correct code in every case.

S. Crocker: This strikes me as very, very strange. Independent
of any verification technology, a lot of the world has
experience with using compilers that were written by
reputable organizations. I'm sure there are compilers with
bugs in them, but it's a lot easier to debug the compiler by
brute force over a long period of time and trust it, than it
is to debug every instance of assembly language code.

S. Di Nitto: Over a long period of time -- nobody wants to be
the first to do that. Why should your project be held up
while the compiler is being verified?

S. Crocker: You're doing the opposite; you're repeating first
experiences time after time.

S. Di Nitto: An unverified compiler is going to cost the Air
Force a suit, because if we hand a government furnished
compiler to a contractor and.-he says "oh, look your compiler
just errored, and I'm goi-ng to have to charge you another
six million dollars" your whole project is over cost.

S. Crocker: The problems the Air Force has clearly have nothing
to do with technology, nothing to do with verification or
languages, but only to do with management.

S. Bi Nitto: Exactly. The technology is there, the management
is not.

V. Schneider: It was said earlier that DOD funds about half the
software work in the country, and it behooves us to address
these problems also. There is a problem when you get a
contractor doing a one or two million dollar project, and
that contractor also gets a new compiler that hasn't been
wrung out. And the compiler not being wrung out contributes
to a six month slippage of that project, the software may be
one or two million but the rest of the project is another
ten million. That's a lot of money.

D. Luckham: Sure, but no reason not to wring it out. (Other
agreement.] You need a technology for wringing it out much

* faster, and for being much more certain about it earlier in
the game.

*S. Di Nitto: Of late there has been a lot of interest in using
higher order languages. There are a lot of languages, the C
language for example, that have been around for a while.
People have used it. It's not on the standard list, but
we've tried to talk people into developing a compiler for C
on the 11/45. They say, 'oh no, a brand new language, we'll
go with one that's been proven out." It's a new type of
battle. Quite frankly, it isn't a management problem, it's

48

a problem with the bloody contractors where the compiler
becomes a scapegoat. When it comes to a court of law, who
understands compilers? The contractors can say something
like "the government gave us this thing and it screwed us
all up.''

[Unknown]: Just to understand the magnitude of the problem
here: we are using two of the most reputable compiler
builders in the field in our project. The Jovial J3
compiler turned 1000 errors in the first three years of use.
In our BI project, thle J3B compiler turned 500 errors in the
first two years of use. We believe those are typical
figures for today's technology on the well-verified
compilers. Those compilers have both been through the
validation process as defined by the Air Force and passed,
prior to the turninL of those errors. So there is a
technology problem in the verification.

S. Crocker: Even if one believes all of that, what are those
figures in contrast to the enormous number of errors that
you have to be inserting one at a time, by hand, into the
assembly language?

[Unknown]: I'm not arguing that we should reject higher-order
languages to go to assembly language. I'm iust trying to
say that there are problems with the present

state-of-the-art. In the Air Force you have to sell i
everything you do, and right now we cannot sell the concept

of i proven compiler.

D. Luckhan: Just to answer your original question: the answer
is no, I do not have a new technology for compilers right
now. We're working on it and I would be hopeful of a
reasonable approach to verifying compilers in the next year
or two. But they might not be DONi compilers because I
think there are certain constructs in DONi that compiler
writers themselves are going to have a time with.

W. Teitelman : I want to make two points. One, where you said
that your programmers had a great deal of confidence in
assembly language because they could see the actual octal
instruction that was produced. Implicit in that is somehow
the idea that each instruction is going to execute correctly
every time. For example, that there isn't going to be some
sort of machine failure. That does happen. Or, in the case
of the machines we're coming out with now, where most of the
instructions are microcoded, very often you'll run into some
peculiar probleii which just happens to relate to some timing
function or some collision on some who knows what, and the
prc~rammer that is writing the program looks at the program,
and the program looks right, and he says "it works, I mean
it should work."~ Then he runs off to the machine guide and
says there's a hardware failure. In the same way, a person
writing a program in a higher order language, when his
program doesn't work, runs off and says the compiler didn't
work. The probabilities in those cases are usually
something like 95 or 98% of the time it's not that problem,

it's higher up the line.

49

The question with the compilers is what sort of risk are you
wi[liri, to take in terms of what the Lenefil. is? In the A-r
Force case you don't say, "we're not going to release a new
plane until we've provern it's not going to crash." I mean,
there's a certain period of testing, beyond which h you 5.i I,
advantages seem to outweigh the disadvantages, or we're
willing to accept this risk, given that there is a certain
level of certainty. Then you go with it. You have to take
the same pragmatic approach with compilers. If you wait
until you can say that they are absolutely 100% verifiable,
you're giving up a lot of leverage right now.

J. Cooper: You missed the point of enforcing a compiler on a
contractor. Even if there's only one bug left in the
compiler after, in the case of the Navy, nine years of use,
if it turns up on a Boeing contract, Boeing can then say,
"Hey, because of that bug it cost me six months and three
million dollars."

W. Teitelman : I also want to say one more thing. In spite of
the error rate that we found on our compilers, we also felt
that the experience of using higher-order languages on those
projects was totally successful. We succeeded in spite of
those error rates.

On the contractual question, we contracted with those
compilers ourselves so there's no turning face on the
government for a faulty DOD compiler.

S. Crocker : Plus, the verification of the compiler isn't going
to solve the general problem that the contractor has a claim
against the compiler if the compiler produces code that is
too slow or takes up too much room, or the compiler takes
too long and burns up too much machine time compiling.
These are problems that are not directly addressed by any
verification technology that is being developed. Such
issues also open the door for a contractor to make somewhat
unrelated claims. It sounds like a very good game for a
contractor and a sort of lack of confidence in the game on
the Air Force side.

J. Bladen I think I can safely say that if we had a proven,
verified compiler for the DOD language, that the Air Force
would consider going to a standard compiler. This is based
on inputs that I've had from people within the Air Force.
Right now, the reason we haven't is that the technology does
not exist.

D. Luckham: Let me be quite clear about this: the technology
is not here yet. It's a research area. Fairly simple
compilers may be possible in say one to two years. For a
compiler of the difficulty of DODI it may be five years
before you can prove substantial properties of it.

R. Balzer I've sat through similar sessions before on the NSW
projects. There again the whole reason for the project was
to inject new technology into the existing DOD environment.
A lot of the issues we faced were technical but the

s0

overriding ones were managerial in nature. Steve happened
to be the ringleader at that point in time. He spent a lot
of time dealing with procedural, procurement, and
contractural issues relating to the way DOD went about its
software business. I think there's an awful lot of
opportunity there to change things, given that we can
provide some technology. I think the issues are outside the
realm of our set of competence in this group to deal with.
Maybe there ought to be another set of people convened to
talk about how, if certain technological advances are made,
the military ought to restructure the way it does software
and hardware computing business. I don't see the advantage
of continuing this line of discussion with this group of
people.

S. Gerhart: From my standpoint it's not proving alone, and it's
riot testing alone, but it's some combination of those two,
combined in terms of testing some components of the
compiler, proving some components, rather than an extreme
amount of testing or proving. There are all sorts of
C'6mbinations of these two notions which I think would give a
much higher degree of confidence, a much more effective
technology, than either the old ways of testing and the new,
not yet always achievable, ways of proving. It's absurd to
split these two completely from each other, when, in fact,
there might be a very effective combination.

[During the course of some scattered informal discussion,
a brief mention is made about the verification of
microcodes. No realy substantive issues are discussed.)

P. Wegner: I was rather impressed with the remark that although
the Jovial compiler had errors, they were able to
successfully complete the project. I think that maybe the
DOD people are frightened by errors in compilers.
Accordingly, maybe we should instead of just living with
compilers that have errors in them, we should increase our
level of confidence in being able to handle errors. Now, in
law there's a maxim that the amount of force used committing
a felony is a dimension of the threat. Similarly, when
there's an error, the amount of effort in handling the error
should be comiserate with the error, and this should be
written into a contract in some way. We should increase our
understanding of how to handle errors, and here again we
need to understand the mechanisms for maintenance and
handling of errors. Probably the horror stories are not due
to errors in the compilers but due to the management being
unable to deal with errors. We should tighten up on it.

D. Luckham: It is possible to contractually specify the degree
of effort which you apply to particular errors by defining
something called the priority of the error and assigning a
schedule of requirements which satisfy the repair of that
error.

S. Crocker :What is your favorite list of problem areas in
DODi that are likely to be difficult to verify (or compile)?

D. Luckham: Modules, dynamic invocation of processes, exception

51

handling, for starters. In the case of the Green language
there is the CONNECT statement, not to mention generic
routines, parameters to processes, among others.

R. Balzer: In other words, you could handle assignment
statements!

52

Session AA: Technology for Compiler Validation
Victor Schneider, Chair

V. Schneider: What I propose to do is brinq up th, soctinn -f

PERFRLUMAN that has to do with compiler valieation rlqettinn
5.?), for this is my one chance to stanrl iin -nr say what T
think about the subject. I have two speakers who will
present their outlook on the subject, Susan rerhart and ;an
DiNi tto.

(Schneider goes on to summarize section 5.2 of PERBLEMAN.
In addition he presents some of his personal viewpoint on
compiler validation. He first observes that in order to
validate a compiler it must be defined in some formal
sense. His particular bias for formal definitions is
towards attribute grammars and translation grammars.

Schneider further suggests that it is useful for
validation purposes to define some abstract machine which
is the target for the compiler. Such a machine would
cover a class of computers that are expected for DOD
application areas. He then concludes his session
introduction with the following remarks regarding the use
of an abstract machine to aid the validation process.]

... The thing that I'm driving at here is that ... it is
possible to specify the translation so that regardless of
the algorithm that you use for doing the translation, we can
expect the object code sequence in the abstract machine
level to be the same for different translators. go, ... one
way of validating would be to feed in a series of test
programs and verify the abstact machine hetween compilers.
And then, ... showing that the mapping from the abstract
machine to the target machine is correct is a way of getting
at the final proof that the compiler is correct.

R. Sites: I completely agree with that approach, but if your
verification compiler says that when I compile a program I
get very specific abstract machine output, why in the world
would you want more than one translator?

V. Schneider: As far as I'm concerned you could have written
the translator iii its own language or in some other language
that is more easily available, like FORTRAN, and move it
around.

R. Glass: I think what you are saying is that every single
optimization of all the processors has to be identical
because otherwise you won't get identical abstract machine
code.

V. Schneider: There is some optimization applied in the
semantics here, and you may even conceive of an extra pass
that's standard that does abstract machine code
optimization. But up to that point, you've got a standard
compiler. And after that point you may have some post
optimization, hut that's a very specific set of
semi-localized transformations on the actual object

53

code ...

H. Glass: Would you say tne abstract machine code is being
checked, or are you talking about the language object code.

V. Scheider: I'm talking about the object code.

P. 'aegner: Are you suggesting the abstract machine should be
standardized?

V. Schneider: Yes. It's a DODI abstract machine.

P. Wegner: In that case there seems to be a concensus in the
previous meeting and in this meeting, and it might turn out
to be quite important to standardize

V. Schneider: We have enough models in the past already. There
is the Janus system of Bill waite and there is the PASCAL
abstract machine. There is no reason you can't talk about
doing that. And once you get down to that level, you are
not that far above any particular target machine that you
are aiming at.

P. Wegner: You can talk about doing it but then agreeing on the
specific thing

V. Schneider: I was proposing this as a model for setting up a
validation process. If people have alternative technologies
that will work as well without assuming an abstract machine,
that is fine, I'd love to hear it.

Col. Whitaker: Two things that bother me. The abstract machine
that you want to go to for different real object nachines
may be very different for something like a vector machine or
what have you. Optimization may be very different if you
have to revectorize the whole thing. Another thing, as you
pointed out, if you were going to validate down to the
abstract ,machine level and make an abstract machine, then
obviously you just take the whole thing into a compiler.
That is the technique that has been done. It is the
technique that not everyone is happy with because some of
them don't generate very good code for the strange machines.

V. Schneider: I was talking about classes of machine. T see it
as a very valid thing to talk in terms of a class of
microcomputers and a class of minicomputers. T realize that
there are great differences between Cyber 79's and 1PM
37g's, for example.

R. Sites: I'm going to talk a hit tomorrow morning about
existing Pascal technology. In fact T'm working on an
optimizer for the abstract machine level, which is machine
independent, from which we will generate good code for the
Cray-i and the LS-ll. I consider those to he reasonable
ex tr ees.

V. Schneider: The main problem in getting something done is
finding a closed form. A closed form is always a
simplification. You take all the rough edges and you saw

54

them off, and you say, "I'l11 take care of that toriorrow." If
I can take care of the close form first I've lot that nuch
done. And I can call it a partial success anyway. The
minute you start throwing special cases at me T say, "Yes,
they exist" and "No, T (Ion't want to handle them today." I
also say technology of formal lanquage specification is
being strained when you try to handle every special case
possible. Tt is really much simpler to conceive of A class
of machines and a sinplified syntax and Attribute grammar
approac h.

(Susan Gerhart now begins her presentation.1

S. Gerhart: I'd like to go back to some first principles since
this morning's session on program verification, in the sense
of proving, was somewhat terminated. I'll continue a little
in that vein. I'd like to take the position that the best
type of validation would really be some combination of
testing and proving. The reason for making this claim is to
try to get you to think about some combination which might
be M~ore effective than either one individually. of course
the problem is that nost of us are experts in one field or
the other Proving is of course newer and very
tentative. Testing is older and since we are kind of
divided up into two camps, the testers and the provers, I
just want to raise a point that may be worthwhile to think
about. [Viz.,] an effective combination of testing and
proving.

For example, some combinations might be to, instead of doing
an extreme amount of either one, do some moderate amount of
each sort in parallel; a moderate amount of testing, and a
moderate amount of proving in the usual way on All parts of
the compiler or whatever program you're working on. we
might also think about doing one or the other in the cases
where, if we could determine this, each one is most
effective, most appropriate. or we might actually look for
some sort of unusual combination of the two of them. We
might think of doing testing and then based upon the results
of testing continue with some sort of a proving argument.
Or we might, and in fact there are some theorems that
indicate that this is feasible, look for general types of
proofs which tell us that if we select a certain set of test
data and if we get the right results on that, then in fact
the program will be correct. There might be some novel
combinations here which just haven't yet been explored.

Why should we do both? Well, testing happens to have a lot
of strong tools. Just to be provocative, I might say that
this might be a case where tools are in fact dangerous
because there's not a whole lot of theory in testing which
tells you why one tool is better than another tool, or one
strategy for testing is better than another. There is, in
fact, a very weak (embarrassingly weak) theory behind
program testing. Proving on the other hand has a strong
theory but of course it's very hard to carry out, andi the
tools are currently quite weak. So we have this problem
that testing, which is done all the time, isn't all that
well understood. Whereas proving, which is fairly well

55

understood, is still very hard to Oo. But, in fact, I think
if you look at them a little more you'll find that there are
various ways that they really have complimentary
capabilities in terms of ability to detect errors, or
ability to convince someone that the validation process has
been good.

... Based on an intuition and what we tried to understand
about testing, there are a couple of approaches you can
take. One is the black box approach, selecting data,
working from the specifications but not necessarily getting
into the internal structure of the program that you're
testing. Another is faced in the opposite direction,
working strongly with the structure of a program. For
example, trying to exercise all parts of it but not
necessarily being so concerned with cases that night occur
or he expressed more naturally in terms of the
specifications. It seems like the most effective way of
testing just in a very general sense, is to work from
specifications, backing that up with some sort of monitoring
of the results of executing those programs, supplementing
what you feel that you have missed in terms of exercising of
the program with additional data.

[Verhart discusses the classes of programs that can he
used as test data for compiler validation. These include
correct programs, "almost correct programs (i.e., those
with subtle errors), and grossly incorrect (really
bizarre) programs.]

... There are, of course, a whole range of testing tools
and it certainly seems to me that to say that you've
validated a compiler when, in fact, you nay not have ever
executed some statement of a program would be totally
absurd ... W. hat I'.l suggesting is that the full range of
these testing tools which are available for whatever
language the compiler is written in should be applied to it.
And finally, as sort of a certification aspect of having
people really look at the test data that is selected, I
think there's intuition and there's a little bit of theory
which would allow you to do a pretty fair inspection of the
test to judge the quality of those. And the test sets of
programs might actually grow also, as for example if one
compiler passes the validation test and someone later finds
an error by trying to compile a certain program, that
program should probably become, thereafter, part of the
validation test set. Another aspect is that, of course, if
a compiler's ever to be modified or to he understood, even
though it may pass the nbove test, it should also he well
enough structured that it can be maintained so that the --node
of the compiler should, in fact, also be read.

Turning to program proving, there's really a whole different
set of issues that come up which are worth looKing at both
from the standpoint of proving and testing. 'hen you try to
prove something you have a major task which requires you to
factor both what you want to piove and the components that
you've proven about in as many different ways as you
possibly can. You simply have to break down the task. You

56

can't talk about proving a compiler in its entirety. But
another way of thinking about factoring this process is the
various properties which you might want to prove about the
compiler . For example, you might want to know that a set
two of programs that the compiler accepts is equal to the
set of legal programs in the language, accordling to the
semantics. You would like to know that if a program is
accepted the compiler will produce code for that program.
This sounds sort of trivial but when you talk ah-out various
space requirements it may be a fairly complex thing to show.
If a program is accepted, andi of course this is the maior
thing that you're concerned with, how do you know that the
generated program is equivalent semantically to the source
program? And you migjht want to break this up to make it
modular, the run time packaqe being separately proved. Sa
there are lots of different ways of factoring the properties
to be validated. Again, some of these might he dealt with
by proving; some of thema might be dealt with by testing].

Another way of factoring this task, and I think that this is
really important, that the compiler is a system of
components. We're used to thinking of it as one big sort of
a monolithic entity. But it uses a lot of data structure
Modules and those data structures are not all that peculiar
to compilers; they're used all over the place. Various
tables, trees, streams of code, streams of characters. You
can think of a compiler in much more abstract terms than it
often is. Algorithms can also be broken out, for example,
for parsing, register allocation, and optimization.
Breaking all of these down can make the task of proving much
more feasible. For example, if we were to really try and
verify a compiler, I think we would go at it by taking these
components one at a time. People have already studied trees
extensively as data structures; they've studied various
types of transformations on programs which correspond to
some of the optimization alqorithis. Tables and so forth
can be verified independent of compilers if they are
sufficiently generalized.

[Gerhart briefly mentions some proof strategies which
make use of program transformations.1

I've just tried to mention a few of the different aspects of
testing and proving and I think it might be worth looking
at, in terms of a long spectrum of time. some combination of
these two.

R. Young: The preliminary PEBBLEMAN document talks about
compiler validation in terms of testing and you've
introduced an alternative method, if you will, one of
proving or some combination of testing and proving. It
seems to me that everytime you change the object machine or
the interface with the target machine, such as the operating
system, you're going to have to go through the whole process
of retesting the compiler. Do you think that we have a
technology for determining the most cost optimal method of
validating compilers? How do we know that a combination of
testing and proving will test and validate it entirely? Do
we have such a thing?

57

S. rerhart: No, of course we have no real cost measures
whatsoever on proving except it's almost infinitely costly.
But testing is very costly also.

R. Young: So how do we decide the trade-off?

S. Gerhart: I don't know but I think that it is worth thinking
,about. Just take te-sting for example. How (1o you know when
to -;to p test i j? How do you know how ,uch Le>;t d ta is
enough? And if you don't know that, then the other sort of
cost benefits of proving are also hard to factor in.

----: I have an idealistic question. In the long run, in a
progran which has been proven or in a module which has been
proven to be correct, what is the role of testing for such a
module other than performance kind of issues? Doesn't
testing sort of disappear as correctness becomes more
formally achieved?

S. Gerhart: Okay, I would never go through a big proof effort
on something that hadn't been tested first. Testing is a
very effective way to get out the real dumb-cdumb errors.
But T think that proving can go much beyond rtestingl in
terms of confidence. Now if we had a sufficient theory in
testing then that might not be true. Put lacking a theory,
it's very hard to draw strong conclusions. qo I would think
of proving as being a phase which follows testing. Rut you
can use proving for lots of different reasons, perhaps the
least of which is to produce a proof. You can use it when
you need to understand something very.. very well and you're
finally ready to formalize it completely in terms of
specifications and really trying to put together all that
you know about a subject. A proof extracts all the
knowledge that you have about a subject so you can use
proviag when you have a great deal of understanding and are
really ready to get that all down once and for all. That is
when it may be most important to attempt to prove--to
increase understanding, to force out kinds of reasoning that
you might not come up witl at all during testing.

V. Schneider: We have two things here by the way. One is that
the compiler is the same as the specifications of the
compiler. And the other that the compiler generates correct
programs. Just because the compiler is the same as the
specification doesn't mean the specification is correct.

S. Gerhart: Right. So correctness ... is a matter of
consi stency.

J. Knight: You said there was no theory about the generation of
test cases. Suppose that you were to challenie everyhody at
this workshop to submit one test program when the lannuaqe
is finally defined and ask everybody who was here to he as
devious as they possibly could he and as challenging as they
could he. How good would the compiler Finally be if all of
those programs went through it and checked out? I suspect
there's enough brain power and hloody-mindedness in this
room that it might well beat a very good compiler.

58

S. Gerhart: I think that's right. Testing very often is done
trying to confirm that the program does the right thing so
you stay away from the data which might show that it was
bad. In fact, testing is most successful in an adversary
sort of situation where you're really trying to beat a
program to death.

.)i Nit to T really don't a'jree that havinj evoryort, at tl,
conference generate test prograns would give you good
results. We've seen cases where a well-used compiler over a
period of ten years still had bugs. ... One machine, the
194, was almost ten years old and we counted five errors in
the syntax analysis package. Now you would have figured
that that compiler would he correct in at least the syntax
analysis portion. The same compiler was Found to have bugs
in it durin training courses.

S. Gerhart: Well, one of the problems often is that people
don't know what the compiler is supposed to produce. So
those errors may have in fact been recurring over the years,
but without sufficient specification or sufficient clarity
as to exactly what was supposed to happen, they may not have
been recognized as errors until this point. Is that
possible?

S. DiNitto: I assume it is, yes. We experienced this in a
case. An error can be there for quite a long time. And I
think it's all the more important that we get it out.

S. Gerhart: Well, let me raise another point. Maybe you can't
expect to ever have a perfect compiler. What is the level
of tolerance which you can accept and what are the measures
that you might bring in to allow you to live with just a few
bugs?

S. DiNitto: We set a standard in the Air Force for let's say
V-3. It has to pass our set of validation tests ... In%.
We used the compiler which passed the same tests and there's
been in the neighborhood of 50-71 bugs. ... I don't know, is
50-70 good or bad?

V. Schneider: 50-7tl during the development process, during the
validation process, after the final week?

S. DiNitto: After we accepted the compiler.

59

Session 5A: Compile Time Tools

Martin Wolfe, Chair

M. Wolfe: I thought of all the tools used at compile time, and
I came to the realization that obviously the compiler
happens to be one of the most important. So what I would
like to do is discuss what we expect from a compiler and
what are the implications of these expectations of those
requirements on the structure of a compiler.

The first thing you could look at is what a compiler
provides; what are its outputs. Cf course a compiler can
produce object code. Rather than call it object code, it
might be better to call it code for a virtual target
machine. The reason for this is we might have trouble
separating that part of a compiler which is runtime support
for a bear machine versus that part which generates what
might be called "actual" machine code. For example, for
machines with a sophisticated operating system, much of the
runtime support will be part of that operating system rather
than part of the compiler itself.

The compiler should also produce documentation aids. What
are documentation aids? Object code listings, for example,
source code listings, error messages, symbol tables. But
what do we mean by these and what format should they be in?
If you look at object code listings, should they have a
correlation to the source listings? In source code
listings, perhaps statement numbers should be indicated as
well as variable scoping, typing, etc.

Whether we standardize error messages or not can have a
tremendous impact. If we say we will have to have standard
error messages then we may have impinged on the parsing
technique one uses. For example, we might have to detect
errors at different times, or if you use one parsing
technique, an error might not be detected at all. Perhaps
we should set guidelines to the implementer of what should
be the format of error messages. For example, you might
want to say that error messages should be in a language that
relates to the source code. It shouldn't be that you have
to look in a table to find out what the error is. Now that
might have impact on the size of the machine that you want
to host the compiler on.

There is a whole range of tools that can provide statistical
information. Should they be part of the compiler or should
they be separate tools? A compiler might provide
information on Lc-he the amount of resources consumed at
compile time. Other issues include: should we provide a
restructuring tool that reformats the listing in some way,
indicates program control flow, data flow, etc? Should the
compiler do full type checking and/or interface checking?
Should a syntax-checking text editor be part of the compiler
or should it be a separate tool?

These are some of the issues that I'd like to discuss this

60

morning. To start off, I have two speakers. The first is
Captain Bladen who will be followed by Dick Sites.

J. Bladen: Unfortunately my briefing on the way we planned to
do this within the Armament Lab is back on my desk at home.
Maybe that is where it belongs. We at the Air Force
Armament Lab have taken the position that the best way to dobusiness with the small computers used in missiles is to

have a standard retargeting compiler. My definition of
retargeting is that you have a parser and scanner
combination which makes up the compiler itself. You then
have an intermediate language which inputs to a code
generator. The code generator is a swap-out item so that if
you write the source code program in JOVIAL and you want it
to run on the INTEL 8080, you load in the code generator
only for the 8080 and target your program to the 8080. You
may then change vendors to some magic computer, and instead
of going back and regenerating the program, it's done now.
Instead of writing new software, we will simply swap in a
code generator for the magic computer. There are a lot of
implications in this statement and one is that we are going
to have a standard compiler. If any changes come to the
language we'll make those changes to the one compiler; it
will be automatically reflected throughout all code
generators, all implementations.

[Bladen's work in this area is discussed further in his
position paper, as well as in other conference sessions.]

J. Knight: What you describe is precisely how the MUST program
is organizing its compiler. We have an Avionic programming
system which is organized with a standardized front end with
multiple code generators for various machines. The various
validation and verification tools operate on the same form
of the intermediate language as do the code generators. The
Huston Space Center has got an IBM version of exactly the
same program written in XPL, and the front end is identical.
They have code generators for various machines. The
reflections that we have so far are that in an Avionics
system, at least at our end, the whole thing seems to be a
very satisfactory arrangement. There was a lot of debate
yesterday about the use of the front end of the compiler for
V & V tools; in our experience anyway, it is a good idea.

C. McGowan: As with DODi, there was an evaluation of existing
languages and it turned out that for their purposes they
decided it was probably better to design a new language
rather than build on an old one. To standardize on an
intermediate language it might also require a similar
effort.

J. Bladen: And it should be an object of this meeting that we
make that recommendation.

C. McGowan: This can have implications on a standard DODI
compiler. If you advocate a single source for the various
compilers that would be distributed throughout the field,
the question of field modification, and in fact the whole

611
issue of configuration control, becomes a significant
problem.

So, for example, if we had a cross compiler that ran on a
large machine, and compiled code for the 8080 instruction
set and then we did a modification to it, then that
modification would have to be sent to all the installations
that have the cross compiler.

J. Bladen: If that modification was accepted as part of the
base compiler, the central agency would be the one that
would do that. That is the way I see it. There will be
only one version of the compiler at any one time. This is
done in the Air Force now in the finance department. If a
change is required by someone out in the field they request
a change be made by a central agency. This agency decides
whether or not it is a valid requirement. They make the
change. They send out the tapes and on a certain day at a
certain time, the system is brought up so everyone across
the whole country has the same system at the same time.

K. Bowles: What language is your standard front end written in
if you have any concern about portability of that front end?

J. Bladen: The front end is written in JOVIAL and this provides
portability.

D. Loveman: What is the intermediate language? Are you
referring to just the internal representation of the
statement sequence of programs or are you including other
information such as the symbol table and flow graphs? The
idea of a standard intermediate language sounds very
desirable. I have found in practice, however, that the
design of an intermediate language is very often dependent
on the desired performance characteristics of the compiler.
For example, the decision whether to imbed information in
the intermediate language, keep it in an additional table
for reference, or recalculate it each time it is needed,
clearly depends on the required space-time characteristics
of the compiler. I wonder whether or not the technology
exists to pick a single standard intermediate language that
is going to be usable over the whole set of potential DONi
compilers.

J. Bladen: We are going to have a group to stLdy this
particular problem.

R. Glass: I'd like to echo this concern with the knowledge of
the internals of the existing JOVIAL J73 compiler. First of
all, the compiler is an excellent design; nevertheless the
intermediate language had a design goal of being totally
independent of the symbol table, and in fact that design
goal failed. It's also true that for some code generators
there are machine-dependent characteristics which still
require front end changes. What I'm trying to say is that
there is concern about the level of our understanding of
good intermediate languages and proper techniques for using
them. It is probably premature to standardize here. We are

62

getting close, and I think we have learned a lot. I think
that the J73 compiler is an excellent example of the
directions we have to be pointing toward, but I don't think
we know enough to standardize.

J. Bladen: First, I want to answer the first thing you said arid
that is that, yes, the symbol table is part of the
intermediate language. That's something that was an
oversight on my part. There are things besides intermediate
language which should be kept around in order to deparse to
bring back the source code, but thesz are implementation
issues that I'm not really addressing at the moment. What I
really would like to address is whether or not the
technology is there for a standard intermediate language.

As far as your statement of whether or not the best
intermediate language is now available, I don't see how
that's possible. But the best DODI language is not
available. However, there are sufficient intermediate
languages. We should choose the best of the sufficient
intermediate languages and say this is the one we are going
to use. Either that or there is going to be a proliferation
of intermediate languages just like there is a proliferation
of FORTRAN languages.

D. Loveman: My experience has been that the design of an
intermediate language is a function of three things: the
source language for which the compiler is being constructed;
the performance constraints imposed on the compiler; and
the target machine architecture. We will have a standard
language, but do we have a standard set of constraints on
the compiler and do we have a standard machine architecture?
I don't think .. Even if you pick a standard
representation form like a tree structure or QUA~s, you know
what the interrediate language is going to look like but the
details of its implementation will depend heavily on items
other than the language.

R. Glass: I'd just like to throw out one other thing related to
intermediate languages. And that is, the possibility that a
standardized intermediate language may result in hardware
which executes that IL, and makes trivial the tasks of
writing code generators off that IL and/or interpreters for
that IL. I think there is a lot of down steam fallout from
standardizing on IL. That ought to be taken into
consideration. Once the standard is established, a lot of
stuff gets frozen and locked into that standard.

C. McGowan: Code generation is one aspect of program
representation with which we are concerned. Mention was
made of doing editing, and editing not just as on source
text, but on something that reflected the program structure.
So the kinds of compiletime operations that we want to do on
an internal representation of a program besides code
generation would have an impact on what would be that
internal representation.

[R. Sites now begins his presenLation.]

63

R. Sites: I am going to talk a bit about implementation for
PASCAL and I think that may settle some of the questions
in your minds and quite likely will trigger more
questions. This is the general structure of portable
PASCAL compilers stemming from the P2 portable compiler
of Wirth, et al. [Sites refers to a prepared viewgraph.]
They wrote the PASCAL compiler in PASCAL in about four or
five thousands lines of PASCAL code that compiles from
source to an intermediate pseudo-code. Then there are
separate translators that take the pseudo-code and
generate code for specific machines. Existing things
that have been running in the field for over a year are
code generators for the IBM 370, the CDC 6600, the
CRAY-i, the PEP-10, and the UNIVAC-11OO seriez. it's a
very wide spread single compiler base of this sort that
is filtering to the University system, and to some extent
the commercial world.

Another possibility, once you compile to an intermediate
pseudo-code, is not to compile that to machine language
for a particular machine but to interpret the pseudo-code
directly. That's an approach that Ken Bowles used in
UCSD PASCAL by writing a small interpreter for the DEC
LSI-11 that will interpret pseudo-code directly.
Rewriting the interpreter for another micro such as the
8080 (which they also have done and have had running for
quite a while) that interprets the bit-for-bit identical
pseudo-code, can be up and running on an 8080 in a few
months.

[Sites proceeds to give an implementation-level slide
presentation of the UCSD PASCAL system. Details are
omitted here.]

P. Eastwood: You emphasize that choosing a very simple assembly
language stack machine may make the compiler portion easy.
Did you find later that that made the code generators
ha rdeor?

k. Sites: No. Any reasonable code generator is going to take a
bunch of temporary names and throw out some of themr and
remap the rest into general registers, index registers,
accumulators, etc. I feel that the choice of forms here
between stack m~achine or accumulator machine or 3-address
register machine, is really a red herring discussion.
Whatever form you pick, it's not going to be perfect for
everybody. But if you do a decent job, it's going to be
good enough for everybody. That's the best you can do.

K. Bowles: In our implementation on the microcomputers, we are
not going through assembly languge, we are interpreting a
compressed P-code and the whole things hangs entirely on the
idea, if possible, to express that P-code in a form which
can be depressed efficiently so that one can get a single
pass compiler on to the microcomputer. Our experience with
these micros and various others' experience suggests that we
don't yet know enough about the process of expressing that
P-code to think that it would be possible to standardize it.

64

R. Sites: I agree with that. I will later take the position
that DOD1 should not in the first two years standardize the
P-code. It should rather take the position that as the
problem is understood, one of the goals is to standardize on
a P-code that everyone is happy with.

R. Glass: Doesn't this approach to an assembler like P-code
make it difficult to do global optimization?

R. Sites: I think I would like to have people stop asking
questions for about 10 minutes. I want to give you a very
specific instance of P-code. It is the assignment statement
A[11 <- B+C.

[Sites proceeds with a very detailed discussion of the
P-code generated by this assignment statement. The
technical details presented are irrelevant to the general
level of discussion which follows.]

[Unknown]: Doesn't your design imply that your compiler, which
is common among all machines, has built-in logic that
decides what variable is going to go into what type class.
You have to assume that there's going to be a memory
hierarchy, and enough compiler logic to decide what goes
where.

R. Sites: That's true. In order to do a decent job for a class
of machines, the front end assumes that there is a memory
hierarchy and has a small constant describing how big each
of the hierarchies is, the order of the hierarchy, and
essentially a small cross reference table that says integers
can go into these places, reals can go into these places,
addresses can go into these places, etc. It's not a hard
thing to capture and it's not a hard thing to change.

C. Taylor: What prevents you from generating a new machine
architecture and having the same problem? That is, having
to have the compiler understand this new machine, etc.

R. Sites: There is no answer to that argument. Whatever
compiler design anyone in this room presents, you can find
yourself a machine that that design would generate poor code
for. Necessarily, as new machines are invented which are
radically different from old machines, there will have to be
changes all through this. What I am arguing for is the
decomposition, which is in fact reasonable and tracks at
least an existing set of machines and ones that are on the
horizon for the next five years.

C. Taylor: That applies to changes to the compiler. The
compiler has to understand what such changes mean to the
computer architecture for the next five years.

R. Sites: That's not completely true. You can take out the
whole thing about the memory hierarchy so long as you are
willing to put up the code which only uses main memory on a
machine that does have a hierarchy.

65

C. Taylor: It seems like you're picking particular data
structures, and you are forcing those data structures on the
machine, while those data structures may not be the best for
the particular machine.

R. Sites: But it can't be the best for a particul]ar machine.
All I'm arguing is that they are reasonable enough and that
so long as you don't lose any information, you can have a
code generator which rips all that back out and puts
somnething else back in. I'm going to talk about remapping
storage in a minute.

P. Eastwood: We have a standard compiler which uses parameters
for different classes of machines. We felt that we didn't
have as many copies of the compiler in the field as we did
code generators, and that it was maintained better.

D. Loveman: I think the objective here is not to describe the
best possible architecture for the ultimate compiler for a
given machine, but, rather, to propose an
architecture for a good compiler for a variety of different
machines. And the question I would like to ask concerns the
role of, or perhaps the conflicts between, the idea of a
single standard good compiler for a variety of different
machines, versus an outstanding compiler for a particular
machine. Do you want to have the ultimate compiler for each
machine you are going to have? Just how important is
optimization for this language on a particular machine?

R. Sites: The idea of having anything even vaguely related to
the target is to have an abstraction that would cover many
targets. You can have very narrow abstractions which cover
exactly one target, or very wide abstractions which cover
many. But there is some judicious tuning available.
Clearly you can bypass the optimizer if you don't need it.
The optimizer at this level, I believe, should have
responsibility for doing global machine independent
optimizations. Anything you do to reduce the amount of
computation treating the pseudo-code as an assembly language
for a machine, anything you co to remove an instruction from
that block of code, always wins on all machines. Anything
you do to take five instructions and move to a less
frequently executed place, always wins on all machines.

M. Wolfe: That's not true. I was having discussions with Dave
Loveman this morning, and optimization is always dependent
on the target machine. For example, even if you take out
common sub expressions from a loop, what happens when I go
into a vector machine? Well, in a loop you may get two
instructions for what could be done on the vector machine by
one instruction.

R. Sites: I don't follow that, but I'd like to talk to you
about it at the break. Your option always, of course, is
not to optimize anything, if you are going to be better off
that way. If you eventually find that you need to build
another optimizer box that does different things. fine.
What I am trying to propose is a structure which at least

66

works for current machines and the current PASCAL language.

M. Wolfe: My point wasn't saying that the structure is not
good; the point is an optimizer is not really independent
of the target machine.

R. Sites: The place I'm coming from is I'm willing to not do
some optimization which will be applicable to one particular
machine only. I'm willing to generate code which is quite
reliable but a little bit slower than it possibly could be
for the alternate machines. And if you have some things
which belong to a particular machine only, you do some
optimization for that machine only at the P-code to machine
code translation level. If you've got too wide a variety of
machines or this whole structure grows for fifteen years, it
will eventually fragment too much, and you need to start
over. We haven't reached that point yet.

[Sites proceeds to give some specific details of global,
machine-independent optimizations that may be applied to
P-code.]

From building this we have found that a pseudo-code is
sufficient; it's not the perfect interface for building an
optimizer, but it's good enough. We also found that there
were a few things missing. We found that in the current
definition of P-code, when you do an array subscript there
is nothing that talks about the length of the array. With
lengths missing, there is no way of telling if an indirect
store into an array could possibly corrupt some other
variable. So this is still an evolutionary process of
discovering exactly what information you need and what
constitutes perfect knowledge. But it has been a
surprisingly good base.

The final code that we get out will be noticeably better
than the unoptimized code, but it will never match the
perfect possible code that you get from a heavily
intertwined optimizer in assembly language for some specific
machine. However, one of the things we have to look at is
that software design cycles are fairly long now, perhaps
five years, while some hardware lifetimes, or ait least
design cycles of new products coming out, are down to the
two to three year range. So it is not clear to me that you
ever want to build a really heavy optimizer for a particular
machine, because that machine architecture's lifetime may be
shorter than the design time to write the compiler.

R. Glass: I have to take serious issue with that position in
the DoD computer environment. Our experience at Boeing
Aerospace is that we have to stuff a lot of code into too
little machine over and over again. A high quality
optimizer is an absolute requirement.

F. Sites: I agree with that. in that environment the lifetime
changes of a particular architecture are much slower, and
I'd like to turn that arcind. Why are they so slow? Is it
because technology in this country can't build new aerospace

67

computers? Or is it because software is so locked in that
you can't afford to use any other machine?

R. Glass: It is primarily the latter.

R. Sites: Things will never change as quickly as they could,
but to the extent that you can move to new machines as they
become obviously attractive, I expect those cycles to get a
bit shorter. I've moved programs from the LSI-11 to the
CRAY-i written in PASCAL using this compiler system. It
really works. Ken Bowles has a PASCAL system interpreter
running on the LSI-11 and an interpreter for the 8080. The
compilers for the two machines are essentially identical.

R. Glass: I know a guy--a top-quality guy--who wanted to rehost
a PA~SCAL compiler from one version of a PDP-11 to another.
It took six months to do it. We all have stories that bad.

R. Sites: Advantages of all this for DOD? First, you have to
build an initial version of DONi. You build a very simple
parser that doesn't try to do anything fancy at all, since
you have a language that is still stablizing. Then you
build brutally simple code generators. You build no
optimizer to get off the ground. You can separately verify
or prove or certify the front end and various back ends.
Certify more than one front end if you need to; verify that
they generate the identical P-code sequence or logically put
out equivalent ones. When you go to the new target machine
you are 'looking at half the work of writing a brand new

C. McGowan: If one were to use this approach for DONi, there
are features such as being able to synchronize on a real
time clock, or schedule concurrent processes, that might

influence this P-code.
R. Sites: I would expect the things you named would have a very

small influence, that there would be a couple operaters or
perhaps more standard subroutine calls for reading the real
time clock or starting a task. I would not expect that they
would in fact affect variables allocated within a particular
module.

C. McGowan: Take for example concurrent PASCAL; what changes
would you have to make?

R. Sites: Other than a standard subroutine call, to start up
the new task, none. I take that back. There's one other
thing having to do with side-effects. In both that
environment and in the environment where you have a language
in which you can say, "this variable matches this macnine
register," you need to be able to tell an optimizer "this
variable could change at arbitrary times and, hence, don''t
use it in common subexpressions."1 That's the one piece of
information 1 can think of that would be needed in addition
in a multi-task environment.

D. Loveman: Does the CRAY-i code-generator generate vector

68

instructions?

H. Sites: Currently no. That's the second year of my research
proposal. And it may turn out that the P-code is not the
best representation, but if it's a sufficient
representation, I'll be happy.

D. Loveman: It seems that in the design of this compiler, one
of the main criteria was exceedingly clean interfaces
between the various pieces of the compiler. I think you pay
something for that. One of the things you pay is the
necessity of gathering certain types of information atI-
multiple different places within the compiler. It seems,
for example, that you need certain types of flow information
in the compiler to help you do memory allocation.

k. Sites: This particular compiler does no flow analysis
whatsoever. The compiler takes declarations as they come in
and allocates storage. It takes the statements as they come
in and it generates code. It's very simple.

D. Loveman: But if you want to do cunning memory allocation,
you need flow information.

R. Sites: If you want to do cunning memory allocation, you
probably should not do it there. The thing I was speaking
of before is that you could rearrange the allocation later.
So long as you have the information about what the objects
are and which ones must be related to each other and which
ones are independent objects, then you can resort them so
that, for example, the first 16 are more heavily used.

D. Loveman: Okay. But you need flow information at least for
the optimizer and for codegeneration.

R. Sites: You need flow information for the optimizer and my
contention here is that the codegenerator should do no flow
analysis. Flow analysis is a very difficult thing which
traditionally is messed up and I feel to have a reliable
system, you need to do it exactly in one place.

D). Loveman: But then how do you do sophisticated register
allocation without flow analysis? Then that's not a machine
dependent optimization.

R. Sites: In the output of the optimizer we currently have
running, when it does things like allocate common sub
expressions or move an expression out of a loop, what it
does is it generates assignments to and fetches from a
series of names which are intended to be mapped into machine
registers if you have any. And those names are ordered so
that name 0 is used very heavily, name 1 less heavily etc.
That is by ne means a perfect register allocation algorithm.
But it's fairly decent, and it maps into the huge variety of
target machines. If you have two registers available, you
put temp 0 and temp 1 i.nto the registers and it does a
decent Job. If you have 16 available, you put the temp 0
through temp 15 into registers.

69

D. Loveman: How do you minimize the number of registers?

R. Sites: That's the job of' the optimizer because the
optimizer's the only place that has the flow analysis
information to do the mapping correctly.

D. Loveman: The point that I'm making here is that there's a
trade-off between having exceedingly clean interfaces
between the different parts of the compiler, and having a
well-engineered compiling machine with systematic
information being passed through in a variety of different
cunning ways. And I think this [former] approach is a very
interesting approach to think of as a first implem~entation
for a good compiler, but I don't think this is a very good
approach for an ultimate compiler.

I want to get back to the question I sort of go'. at. before
which is the role of an ultimate optimizer for a language
like DONi. Perhaps we're raising questions about program
transportability -- how important is program
transportability? You can argue the transportability of
tools written in DONi may well be quite important. But for
the programs that are in fact written in DCD1 for embedded
systems, how important is it when these programs must be
highly optimized? Is it not liable to be the case that you
will know at some point in time that you are in fact
compiling for this computer which is going to be in the
nosecone of a missile for the next ten years? That guidance
program is never going to change and in fact what ou may
want is to have the best possible optimization you possibly
can applied to that program to help make it fit into that
particul.ar environment.

Another somewhat related point is the idea of the ultimate
optimizer. The technology that exists for doing analysis
and optimization on programs is currently well beyond what
is in fact implemented in production optimizers. The main
reason is the trade-offs on just how much time you want to
spend in the compiler doing optimization versus the benefit
you're going to get from doing an optimization. Embedded
computer applications may just be the case where you're
willing to say that one version of a compiler you want to
have is the one where compiletime is completely irrelevant
and what you want out is the best possible code you can get
in the state of the art.

R. Sites: I might read you the DOD requirements - they're not
quite that extreme. If those are your requirements, you
should be writing in assembly language perhaps.

[Scattered disagreements.]

K. Bowles: You talk about optimization as if it was one animal
and yet, like in this missile example, there are at least 2
different optimizations you might wish tc apply to different
parts of your code. Is it space or is it time? Or do you
want to be able to partition your code and optimize for one
purpose in one area and for the other purpose in a different

70

area, and so on?

D. Loveman: Green lithe language] lets you say that a procedure
may or may not be compiled in-line. The way that it's
phrased in Green, you have to commit yourself when you write
the procedure as to whether or not it goes in-line, and
that's a commitment for all calls of that procedure. And
based on what you're saying, you'd probably want to have a
facility which says for this call, which happens to be
inside four doubly nested for loops, you want to expand
in-line. And every place else you don't, because you want
to save space. So there's a trade-off of language
facilities for talking to the optimizer.

R. Sites: The optimizer built in CRAY-i in fact will merge
procedures in-line under appropriate circumstances.

D. Loveman: Can the programmer hint at what those circumstances
are?

R. Sites: Currently no because PASCAL doesn't allow any of
that.

D. Loveman: I agree very strongly with the idea that runtime
information about the real honest to goodness program should
be fed back into the compiler. I can think of two ways of
doing it, neither of which is particularly attractive. One
is, keeping in mind the idea of the program development
system, what you want to have is the result of this analysis
fed back to the program development system and catalogued
with the program so that the information is available
automatically the next time the program is compiled. There
are obviously certain problems involved with that. The
other is by means of programmer introduced statements into
the procedure giving some of this information. That has
always been a problem. So you find yourself either stuck
with a very elaborate system or the requirement that the
procedure be modified by the inclusion of the information.

R. Sites: No, you don't have to be elaborate, there's middle
ground. You can supply a very simple tool which generates
statement counts. The tool that generated those counts I
wrote in about a week for the CRAY-i PASCAL compiler. Once
you capture those counts on a file as ASCII characters you
don't have to build elaborate tools to catalogue them and
save them and associate them with a particular module and a
particular date. All you have to do is have whatever
optimizer or whoever's going to use them be able to read a
file, and then for your starting place you have programmers
say this is the file that has the counts. As you build more
elaborate tools that do some of that bookkeeping for you,
fine. But don't start off with the whole thing so top-heavy
that it crashes under its own weight before you do anything
useful at all. Build the simple, straight-forward tools,
and use them a bit.

J. Bladen; I'a like to address a statement you made about the
requirements within the environment that this system will be

71

used in. As long as it's used in missiles, it's an absolute
requirement that it be retargetable. That's the most
important thing. As long as we are buying competitively,
which is hopefully the American way, we're going to have to
be able to pull out one guy's computer and put another
computer into the system.

E. Nelson: There's another reason for having portability of the
software in that as you get into more and more of the
system, there are going to be common parts that may be used
in a different system, and it may reduce the software quite
a bit if you can reuse these parts in another system.

[The line of dicussion now moves towards the topic of
separation of tools versus inclusion of many capabilities
into a single "compiler". R. Taylor makes the following
statement which seems to meet with more or less
unannamous approval.]

C. Taylor: I'd just like to react a little to Susan Gerhart's
comment of yesterday. I liked her idea that the common
notion of compiler is not very useful. Rather, we should
have parts which fit together very well, and if you wish to
use them together then that's fine and good; just don't
build me a monolith, and don't require a monolith.

[The topic of discussion now switches to the desirability
of standardizing source code formats, both those output
by the compiler in the listings and those used by the
programmers. The topic of how statement numbers should
relate to source statements is then bantered about at
some length. Crocker makes the following well accepted
remark toconclude this latter subdiscussion.1

S. Crocker: I've been fortunate to be programming in Interlisp
for about four years, and I hope to never see another line
number!

[The discussion moves now to the area of standardized
error message formats. Again, Crocker supplies some
well-needed wisdom to aid the generally disorganized
dis'ussion.)

S. Crocker: It's a question of specific iases. It is clear
that you can't tell how much storage is required [for error
messages] until you look at what the object machine is going
to be. So running out of storage, for example, is a kind of
thing that is not going to be detectable at parse time. But
I think the idea of having a large class of syntax and
semantic errors caught in a standard way with standard
diagnostics is an excellent improvement on the current state
of the art. Let me frame it as a motion. I hereby move
that as part of the definition of the langLage there be
standa-dized diagnostics.

D. Loveman: Stanoardize all user interfaces with the language?
Forms of listings, forms of outputs, etc?

72

S. Crocker: Yes, in fact I have the following philosophy.
There are people who like to put things on different lines
and there are people who like to control their own level of
itidei Uition, und do their own prttyprintint by hand. In
terms of sharing code among people, I believe it is a
positive benefit to have the system decide what the format
i'.;, i.e., to have a standard system of' prettyprintin,.
(This moves into a different airea, but ;i; 1 , ;1-,:; w're
talking about user interfaces.) People who are very set in
their ways about how much indentation they are going to have
and where they are going to put the parenthesis, and all
that sort of thing, actually do a slight disservice in terms
of making it more difficult to communicate code to other
people. They also spend a lot of time doing that which is
unnecessary. So in terms of moving in that direction, I
:,v Id say yes.

D. Lovenian: After the great philosophical debate about how
terrible his style is and about how wonderful my style is, I
would rather the two of us program in the same style
whatever it is.

S. Crocker: You can't argue with me; I want your style. I'd
much prefer to adopt your style so that you and I can read
each other's code. I have less concern about where these
things go. In fact, as I find that I have the opportunity
to reason it out, I spend an enormous amount of time playing
with it and deciding on it. In fact, it doesn't make much
difference. What matters is that I can accommodate quickly
to a standard set of specs.

[Scattered disorganized discussion continues for a brief
period after which Wolfe closes the session with a short
summary which reiterates some of the major topics
discussed.]

731

.IeSion F: LFipport inql Flotir i .hj nI Carq'!ao!: u I ti' r
P t er weqn r , Chi r

. Weqner has summarized his openinq remark! in thF five
Iaqe report which follows immedilately.1

74

Language Design and Evaluation Studies

Technical Note 7: Supporting a Flourishing Language Culture (Chairman's remarks,

DOD Higher-Order Language Environment Workshop, June 1978; edited version, October 1978)

The basic idea behind this session is that a programming language provides a

,.v;i'; 1,r' th, development of a literature of programs anO a culture associated with

it:: cmluunity of Thier:;, 1hir happens with natural languages over a period of many

fenerat ions, and with programming languages over the space of a few years. We want
to look at the mechanisms involved in creating such a culture and consider how the

process of introducing a new programming language such as DOD/I might he helped by

understanding of these mechanisms. We can gain some insight into these mechanisms

by examining existing language cultures for Fortran, Cobol, Algol, Lisp, Basic, APL,

etc., and attempting to understand the factors which govern the success of these

languages. Understanding of the "cultural dynamics" of existing languages should

help in the formulation of policies, incentive schemes, technology transfer mechanisms,

etc. to encourage the development of a new language culture.

The factors which govern the success of a language are technological, sociolog-

ical and ecological. For the purposes of the present discussion we may assume that

otr new language is a technically superior and technologically feasible and desir-

.1ble product. We must consider sociological factors which govern change and technol-

,).y fran.;fer in a community of language users. But perhaps the best starting point

in considering factors which govern the introduction of a new language is an ecological

(Darwinian) one which views the rise and fall of languages from an evolutionary stand-

point tempered by modern acology.

Early programming languages such as Fortran and Cobol filled an ecological void

and -Jere therefore able to spread very rapidly (like weeds). Later languages like

P1./I and Simula which claimed co provide a better means of meeting general-purpose

programming needs did not fare as well as the first languages, in part because they

could not displace an already indigenous population of ecologically successful lang-

uages. This is true to an even greater extent in the natural language field, where

Esperanto was never a credible alternative to existing natural languages in spite of

its claims to superior logical structure. Displacement of an incumbent language by

a superior product is thought to be easier in the programmning language field than in

the natural language field. But the magnitude of economic, sociological and cultural

investment in existing programming languages is a very powerful force preserving the

status qCpc

757

The success of relatively late languages such as Basic and APL may be explained

in terms of the notion of an "ecological niche". Both of these languages owe their

success to filling an ecological niche not already occupied by an existing successful

language. The first step in the success of a language is to find an ecological niche.

By occupying a niche it becomes an accepted member of the conmmunity of languages. A

language with a niche, like a people with a homeland, can later branch out and muscle

in on the territory of other languages. But it must have its home territory in which

it develops its cultural roots before it can indulge in empire-building.

DOD/I has staked out a claim to an ecological niche in the domain of "embedded

computing". This niche is currently occupied by assembly languages, CMS-2, Tacpol

and the Jovial languages. Many of the current occupants are technologically backward

and it is hoped that DOD/I will be a consiOderable technological improvement over all

current incumbents. However, each of the cu,-rent incumbents supports a language

culture and a group of programmers and managers that believes itself to be economic-

ally dependent on the continuing of this culture. DOD/I must carve out its ecological

niche by displacing current occupants, and this task will inevitably cause pain and

discomfort to current occupants of the niche.

Introduction of a new organism (programming language) into an already populated

environment involves a process of conquest and subjugation of existing occupants. It

is well known that occupying forces are resented no matter how humane they are or how

cogent and persuasive are their arguments that they represent a better way of life.

We must examine mechanisms for introducing a new programming language that are not

too painful for previous humah occupants of the ecological terrain, and that will

allow the indigenous population of programmers to identify quickly with their new

masters and become productive citizens of the new society. Such mechanisms will

clearly involve both the carrot and the stick. There will inevitably be an element of

coercion by means of high-level directives. But there will also be incentives and

reorganization of the infrastructure so that elements of the commnon culture which are

capable of change are allowed to take the initiative.

Introduction of a new programming language will inevitably involve some blood-

letting. But the transition might perhaps be accomplished by a short and sharp

clash with -:he palace guard (old guard) rather than by a civil war involving the rank

an~d file. The most conservative elements in an entrenched language culture are prob-

ably the middle management. In order to facilitate change to a new language and

methodology it will be necessai'y to retrain or replace the middle management and to

76

allow younger people within the culture who recognize the need for change to take a

leadership role. A culture must not be viewed as a monolithic black box which can be

expected to respond to high-level directives. We must understand the internal struc-

ture and social dynamics of the culture we are trying to displace. High leverage

points within the structure must be identified and pressure should be applied so that

a minimal amount of radical surgery is necessary.

Three important factors in introducing a new language are documentation, training

and economic incentives. A good programming language manual is necessary but not

sufficient documentation. In order to convince programmers that the language is

appropriate to their needs and show them how to use the new language, there should be

well-documented, well-written sample programs (benchmark p~og,'amiri in each of a number

of application areas. Such sample programs would allow instructors to introduce the

language in a meaningful way by example programs rather than by teaching language rules.

Presentation of the programs would automatically introduce trainees to good methodology

and documentation standards in the new language and prevent the decline in productivity

due to imperfect understanding or resentment that often accompanies the introduction

of ambitious but complex new products desigred to increase productivity in other

areas of human endeavor.

Learning by reading well-written, well-documented application programs is an

effective mechanism for technology transfer. It has not been possible to use this

technique in the past because of the difficulty of producing well-written sample

programs. However, such programs could produce considerable dividends in catalyzing

a flourishing programming language culture. Documentation both at the language manual

level and at the application program level should receive high priority in the common

language effort.

Effective reeducation is crucial to the success of the common language project.

Changes as fundamental and potentially traumatic as introduction of a new language

and methodology cannot be accomplir ,d by a short course given by teachers outside

",ie organization. Leaders within the organization must be identified and given author-

-f, so that cultural changes can be internalized.

.rlrives for transition to the new language should be provided at many inter-

S.- , 4-~nw :.vels. A deep qnderstanding of the structure of an organization,

o; . -f ,Ant er- An,1 of the way they can be persuaded to do things is

* of, - r-K p-ints at which the carrot and the stick may

4t. rirplv dirert cash payments and can be very

77

subtle in their operation, involving social approval, better working conditions,

considerations of status, and brownie points for promotion. The explicit and implicit

system of incentives in software organizations should be carefully analyzed and should

be restructured so that innovation, imagination and flexibility are rewarded, although

not at the expense of productivity and reliability.

In conclusion, I should like to point out the dangers of developing systematic

techniques for replacing an existing language culture by a new, supposedly better

culture. In following this path we are led to advocate reeducation techniques not

too dissimilar from those advocated in communist China. We are advocating systematic

and efficient methods for destroying a culture presumed to be bad and replacing it

by one presumed to be good. However, if such techniques are developed they must be

used with great caution. There are many examples of techniques for changing flourish -
ing cultures getting into the hands of the wrong people. For example, Hitler's objec-
tive was to transform the contemporary German culture, which he presumed to be tainted

by Jewish and other impure influences, into a purer, quintessentially Aryan culture.

Perhaps there is less controversy about the desirability of replacing existing embed-

ded computer languages by the DOD/I culture than there was about what Hitler tried to

do. But DOD/I is as yet incompletely defined, and people like Dijkstra and Hoare have

voiced reservations that the end product of DOD/I development might not turn out to be

as superior as optimfists are predicting. Since the proposed changes will indeed be

traumatic, culturally painful and economically hazardous to a good many people, we

should not rush headlong into cultural change unless we are very sure it is desirable.

If we are not totally sure of the desirability of introducing DOD/I, we could

refrain from coercive manipulation of existing language cultures ane allow DOD/I to

prove itself on a voluntaristic basis. This has the disadvantage that DOD/I would

take far longer to establish itself and that the inefficiencies of the present way

of doing things would take much longer to eradicate. There are clearly different

degrees of coercion possible in introducing a new language culture. Tradeoffs are

desirable between coercion which accelerates adoption, and caution which reduces

both human sufferin~g and technologic mistakes of the new culture. If a new language

culture is imposed from above the new master should be gentle and humane. The easy

way out of sledgehammer edicts from above leading to perplexity and resentment in

middle management due to insufficient guidelines and fear of ob. olescence should be

avoided. Even a humane conquest will not at first kte appreciated by the conquered

pcpulation. Fowever, the degree of dislocation and the speed with which the new

78

culture takes root and becomes effective depends greatly on the educational and soc-

iological mechanisms used in effecting the transition from one culture to another.

The above remarks are intended to justify the title of this session by illustrating

in vivid fashion that programming language cultures are almost as real and relevin

as cultures associated with natural languages. I'm going to ask Rob Kling to present

a second perspective on programming language cultures and Patricia Santoni to discuss

practical experience in providing technology transfer and culture transition facilities

in the Navy.

79

R. Kl ing: I have very some brief remarks about language
c ul ture. I should say personally my experience with
language cultures is limited largely to the LISP community
which has been one of the more active and rich language
cultures. It also represents a very voluntaristic culture
in that there is no mandate that anybody must use LISP. But
for some programs it' s a relatively attractive language and
many uses have developed somewhat voluntarily.

I'm impressed by Peter Wegner's revolutionary fervor. I
would like to draw an analogy between developing language
cultures and the characteristics of certain social
movements. The DODI effort is to be a program of social
change almost on the scale of the Equal Rights Amendment,
the civil rights movement, or prohibition. It entails
non-voluntary compliance, across the board, in hundreds or
thousands of programming shops with a particular language
and its preferred narrow array of programming conventions.
It contrasts with voluntaristic movements such as LISP and
APL.

There are other examples of voluntaristic movements which
have attracted a fair amount of attention. For example, VW
use. Apparently during the 50's VW drivers used to honk and
wave at each other. There is a small literatures of self
repair manuals for VWs. And vw use spread, but there was no
federal mandate or any other state mandate that people need
drive VWs or not drive VWs.

The easiest analogy to draw is between DOD1 and other
languages, such as FORTRAN or APL. I think that that is too
narrow a basis for comparison. What seems to be on the mind
of DODl adovcates is actually a much broader scale,
non-voluntary form of social change. The appropriate
analogies may occur from P'RA, civil rights, and probihition
rather than from LISP, APL, or COBOL. From this point of
view something more than an ecological niche is really at
issue. Those social movements that seem to gain support and
attractiveness have visible symbols. There are cheap
ideology slogans, the kind of things that you wince when you
hear: small is beautiful. And successful social movements
often have charismatic leaders, the Ralph Naders of the
world, who basically focus attention with some fervor. They
embody a point of view which others try out and which then
draws the interest of a lot of people. I'm not sure who is
going to be the Ralph Nader of DOD1. If it is expressed in
Directive 2-42-73A it is likely to draw a Lot less personal
interest than if there were the Ken Iverson of the language.

And it helps to have some social resources. Why would
people care about using DODl and promoting it in their home
organization? one set of reasons may be that it is simply a
technically better product. But if use is voluntary and
products are often special purpose, then one would expect
that the use of the language would mirror that of APL, LISP,
or the VW bug. Some people would be excited by its
aesthetics or prefer its style. others would prefer to use
something else, even though that something else may be

80

clumsy in the eyes of other behplders much in the way that
Pontiacs are clumsy in the eyes of VW owners. So other
kinds of resources need to be manipulated to encourage
universal use. For example, the status of a potential
language user could be enhanced by offering certificates or
awards for DOD). proficiency.

If you look at the social movements that are most
successful, many of them are voluntaristic movements. They
draw people who are particularly interested. There are very
few who have an incentive to join because they gain access
to new resources; they enjoy the associability, new status,
or new contacts, etc. But it is not just on the technical
merits or social merits alone that people become attracted
to large scale social movements. Those that are mandated,
and I use prohibition as an example, may carry the day for a
short period of time...

I don' t have good ideas about how to build a language
culture for DOD). that would be guaranteed to be massive and
be effective on a large scale. I do suggest that those
people who are interested in building such cultures really
take seriously the analogy between a DOD. language culture
and large scale social movements of the sort that I am using
by analogy, rather than simply the voluntaristic language
cultures that we associate with different programming
languages like APL, LISP, etc., because these latter
cultures are much more voluntaristic than the DOD!.
enterprise is meant to be.

F. Taft: Would you say that the large scale social migration
toward Pascal languages in general is going, in some way, to
support the adoption of VOD).?

R. Kling: Probably. The acceptance of VW's also supported the
developmnrt of Japanese sub-compacts and the movement of
Americans to compacts. Some ideas pave the way and other
variants of them are more likely to spring up and be
accepted. Seyond that I'mr not sure what could be said.
Pascal use is still voluntaristic.

Col. Whitaker: on the voluntaristic side . .. what you may not
have factored in is that the prohibition amendment hAs
already been passed. The first step in the exercise was to
get DUD Directive 5000.29 which prohibits, if you wish, the
use of assembly ianguage, which is the competitor. So we
have passed the amendment and now it is just the enabling
legislation that we are worried about.

And we hope that it will be a long term movement. on the
level of the people that are making the decisions, it
certainly will be a long term movement. None of these
languages are voluntary on the part of the individual
programmer. He obviously has to work with whatever system
he is given, whether it is in a local university computer
center as the only compiler they have, or whether it is
mandated for a DOD system.

81

[Unknown]: I can think of a couple of incentives. The first
one is that if there are superior tools available with rODi
and the second one is if a wider group of target machines is
available.

R. Kl ing: I have some data which may shed some light here.
It's not about programming languages, but about the transfer
of software applications. one of the areas that I have been
studying the last few years is computing in the local
government agencies. Local governments often place a lot of
value on making programs portable, for example financial
accounting packages or land use models. There are economic
arguments about saving the cost of redevelopmnent that make
it seem attractive for agency A to pick up the package
developed by agency B. There are also certain technical
characteristics which make it easier to move a package. If
it is [written in] a somewhat machine independent language,
if it has good documentation, all of those things would seem
to make it easier. They decrease the burdens of moving
packages from agency to agency.

If you actually go out and look at the extent to which local
agencies transfer applicati 6-pa-c-aqes, it is relatively
negligible. most application packages are developed in
house. And part of the reason for that is that there are
tremendous local incentives for people to develop their own
thing in house. For example, it is more fun for a lead
analyst to be the head of his own new development project
with its own new acronym and Its own new fleet of
programmers than it is to be the heaO of a quick transfer
job. it's easier to be the expert, and it's more fun to be
the expert on one' s own system than it is to learn about
somebody else's system and try to adapt it.

It's easy to say if we develop systems so they are
technically easy to transfer with machine independent code,
with good documentation, that that would provide an
incentive. These are not "incentives." Similarly, those
people who suggest that a rich set of software tools or many
host machines for DOD. provide an incentive to use DODI have
developed a faulty analysis. Those are not incentives;
they simply lower the cost of using DODI. Incentives have
to do with kinds of things that people get their kicks out
of -- career mobility, additional perauisites, etc. If
there aren't changes in. the well being felt by the managers
or programmers who use the tools on a day-to-day basis, all
you have done is lower the cost. You haven' t increased the
incentives for DODi use, and DODl use may well not increase
very much.

fUn knownl: And so you think what I said is invalid?

R. Kling: It's not invalid, you've suggested a helpful but not
sufficient co.ndition. (ncreased richness of tools and
target machines help, but you can' t stop there. I think
that if you look at software application transfer you will
find that It Is an interesting analogy.

82

N. Finn: What you just said is true now, but there also seems
to be a lot of pressure on local government to transfer
those programs. I think that as people start being able to
transfer those programs, your head analyst is going to begin
to see that when 10,o0o have written an inventory management
program it is no longer so glorious to write another one.
If he can transfer this program from somebody else in a lot
less time, he' 11 have time to do something a lot more
interesting and at a lot higher level. People are beginning
to realize that, too.

R. Kling: We don't see that reflected in our data. And we've
got good data on transfer in and transfer out from local
government settings. I can really speak in this case from
solid data from 500 different American cities and 5 0
countys.

N. Finn: Do you get the impression, though, that it is changing
in favor of transferring software?

R. Kling: There is a lot. Local government staff virit other
sites to see what they have done. They then go beck and
"improve" other applications in their own district based on
what they have seen.

N. Finn: When you say "improve" I assume you mean really
discoverintg the same mistakes.

R. Kling: Sometimes people learn, but what I am saying is
slightly different. The incentives in one's own
organization are to create new systems locally. Local
government staff like the arguments about "marginal
differences." For example, "the city of Irvine just isn't
the same as thp city of Costa Mesa, our purchase orders are
different." I hear those same arguments about embedded
systems programming. "We really need access to peculiar
feature Y which isn't available in language X. And by gosh,
if we don't have feature Y then we can't use language X, and
it is really clumsy to use language X in the absence of this
peculiar feature." People are very adept at making up such
arguments when it's in their interest to do so. There is
very little I hear in't1VeWscussio'n o-ri'-l development
that makes it in the day-to-day interest of many managers or
programmers to really dive into the language in a major way.

Col. Whitaker: What you've got to watch out for there is that
the services themselves are very strong, So in that sense
DCD1 use is voluntaristic.

I might point out that there is another thing that may
offset the analogy that you have there. The p-rson
[R. Kling describes] who makes the decision about the
applications package to transport or write is the head of
dataprocessing or whatever in a company or local agency. It
is therefore to his personal benefit that he gets to do this
wonderful thing that he wants to do. The person that makes
the decision of a similar nature within the SPO doesn't have
the same rewards. Software is seven levels down. He is

83

lucky if he can even find it in the accounting system. So
he makes decisions on the basis of his total cost picture,
and not on personal ramifications.

R. Kling: You make it sound very rational.

Col. Whitaker: That's the way the system is organized for sound
reason.

P. Wegner: Concerning the seven levels between (SPO management]
and the programmer, is there any reason for tinkering with
any of these levels or providing incentives that are special
to a specific level?

fScattered remarks continue. P. Wegner then introduces
P. Santoni for her presentation on technology transfer.]

P. Santoni: Let me start by saying a little bit of what the
basis of my experience is. About two and a half years ago,
in a joint Navy and ARPA project, we decided that we wanted
to create a thing called an SDL, which is a Systems Design
Laboratory, the idea being twofold.

One is to make available existing tools. Consider the
situation that's in the Navy for programmers who are really
working in a very primitive environment. The system
designers and developers are working hands-on doing self
hosted comrilinq, etc. -- all the big bad things we have
been talking about. There is very little knowledqe of any
other tools around. Perhaps some of them have heard of
HiPO. ror the most part, if they have tried to pick it up,
they decideO it was no good for one reason or another. So
you've qot a very primitive environment.

There are tools that exist in the world. The nuinher one
problem is, of course, that most of these tools are not
geared to the military programming languages. Someone has
to be willing to go out and procure tools that are geared to
CMS2. So that's one problem. But there are a lot of tools
in the world and the technology is there to provide them to
people, if you would just put them into an environment where
the people could access them. Clearly you can't put this
whole host of tools on the UYK-20, so we started out in a
widely accessible environment. We choose the ARPANET,
putting up all the tools we could find that were available
or that we could promote for the military programming
environment.

The other part of our policy addresses the issue that there
are a lot of tools that do not exist today, or there are
areas in which the research is still at a very rudimentary
level and there aren't widely available tools of any kind.
In the area of test and V and V, this is somewhat better,
but especially in the design and requirements areas, there
aren't an awful lot of real (computer-based tools you can put
your hands on and offer to people. So the other thrust of
our work is to promote research in those areas. I consider
my function very much one of technology transfer.

84

There are a lot of people out there in the trenches, so to
speak, and they come in different personality types. Some
of them are aware that there has to be a better way to do
things. They have hit their heads against the same problem
too many times, and they say, "if only somebody would give
me something" -- or maybe they don' t even know what they
need -- but they just wish somebody cared. They don' t know
what door to knock on. Those kind of people, if you can get
the word to them, will come to you. Then there is the
opposite end of the spectrumn, the people, who even if you
hand them an assembler, wonder why. Pelieve me, I have run
into this type. So you've got a whole range of people.

A couple of other background things before I go into more
specifics. You have to realize that basically the military
and civil service is a conservative organization -- middle
management especially. Risk is not something that is
attractive to them. They would rather pay more than take a
risk. And a risk is not necessarily a chance of failure; a
risk to some of these people is a chance of overwhelming
success. They are just not willing to disturb the status
quo. Some of the people who get promoted are those who rock
the boat the least. You can point to them and say, "but
he's never done anything." Right, but he' s never disturbed
anything either. Especially with the middle management kind
of people, you have to understand that they don' t want to
disturb the way things are done now.

P. Wegner: How about fear of obsolescence? Does that come into
i t?

P. Santoni: I've never seen much fear of it. The predominant
computer in the fleet right now iE, 20 years old. it's not
one of those things people worry about.

P. Wegner: If you go to POD1, if it's going to make a big
change, might not resistance come in part because of fear of
obsolescence?

P. Santoni: Could be. There are people whose empires depend on
it. You were talking about incentives. Lack of risk is an
incentive,, Low cost may be an incentive, but you are all
aware of all the vast cost overruns that have happened
without destroying significant careers. Another thing is
the idea of an empire. If you are talking about a middle
management incentive, a lot of these people are oriented
toward the empires they can build. And an empire may be
that he has all the people that know anything about NTDS, or
he has all the people who do all the radar work in this
corner of the world. Empires are based on all kinds of
really strange thingb, but I can imagine a DODl empire at
each of the Navy laboratories for instance. Who knows, that
might be the kind of incentive you can give people, if you
want to.

Another thing to keep in mind is that what we are trying to
do is create an. environment. The idea with DOD1 in
particular, and with the whole thing, is to improve the

85

production of software in the military. And, I think we all
accept that you can' t do that with just a language. When
you are introducing the idea of "life-cycle cost" , you are
trying to change a situation of small developmient costs and
huge maintenance costs to one in which more money is spent
on development. Well, when you are talking to the quy who
is funding the development phase, you are trying to tell him
that he has to spend twice as much money so that the guy
next down the line can do a cheaper, better job. He is
still going to come in with the lowest bid, and the lowest
bid perhaps is going to be the one, on paper anyway, that
just uses the minimum set of tools and doesn' t do all this
other fancy stuff. So you have to look at how you influence
the people that are above that developer/maintenance level.
You have to influence the guy who is funding the whole mess.
I frankly don't know where you find him in the Navy, but he
must be somewhere. He has to locate those project people
and convince them that life-cycle is their concern and they
in turn should issue policies that say "developer, realize
that you do have to put in larger costs so that we can lower
the maintenance costs."

(Some further discussion of incentives ensues after which
P. Santoni continues her remarks.]

One thing T would emphasize is that you have to build
up user confidence. In particular you have to have tools
that work. When you deliver something, you have to be sure
that it's going to be ready and workable.

The next thing is the tools must be usable. In my
environment I'm talking to projects who are used to doing
hands-on work on a UYK-20. They write their code on a
coding sheet; they hand them in to keypunch operators;
they take those decks of cards and put them into their
UYK-20. They work the maintenance switches and control
lights, and they debug that way. This is their whole cycle.
Self-hosted compile, self-hosted load, everything is in that
environment. I'm trying to take this poor guy who knows
hopefully everything there is about the UYK-20 and transport
him out of that environment and set him in front of the
terminal and say, "now do all your things." First of all,
even working a terminal is probably strange to him. He
knows how to do business now, today. You have to make it
attractive to him to do business in a more modern way.

Great documients are not enough. I have handed users stacks
* of documents and they come back to me the next day and say,

"I tried to use the system yesterday and thus and so doesn't
work.* 00h~, it doesn't? I was just using it this morning.

* Let me see what you were doing. Oh, here it is, this page
in the manual." "Oh, I see, it's written up in the manual,
is it?" They don't read them. Typical attitude. So, your
key is people then. I spend three-fourths of my time being
on-call. You must have people with thorough knowledge of
all your tools. Those people have to be readily available;
they can't afford to be snippish kinds of consultants. But
you must have that people element in there because

86

otherwise, what you' re doing is taking the user out of a
familiar environment, throwing him into a strange pond, and
saying "nlow, sink or swim." You can' t afford to do that in
the DOD or at the worst no culture will grow up at all. At
best perhaps several individual cultures will grow up and
the individual set of tools and everything. There's got to
be a very strong force in the DOD that says "we're here to
help"

Now that you have your tools absolutely ready and you have
your perfect consultants and everything, how do you get
people to come to you in the first place? There are lots of
different incentives. In one case, a group came to me
mainly because they had been mandated to use CMS-2 and could
not afford as an individual project to purchase their own
compiler. I had a compiler. I've got something they don't
have that they either have to use or want to use. So that' s
one way to get people to you. Another thingi is to have a
super-duper tool that is superior to anything they've got.

[P. Santoni describes an example of a UYK-20 emulator
that she offers to users as an incentive to use the SDL
system.]

There are also obviously other ways to do it.. There
are management deals. Washington- level,
sponsor-to-sponsor-level armtwisting is possible.

[P. Santoni also describes certain contract incentives
that can be used to induce people to use a particular
language or system.]

..The next thing I'd like to talk about is the
personalities involved, which I hit a minute ago. I believe
it was you, Peter, who mentioned trying to open things up so
that the younger people can get in. Very few of the
programmers whom I have run into on the projects that I've
been associated with are people out of universities -- very,
very small percentage. Most of them have been around for
several years. However, that does not mean that I have not
seen the bright, new personality type who wants to use the
tool. So T would take issue with whether it' s a matter of
age. It' s more a matter of viewpoint. It's more a matter
of finding those individuals, regardless of their background
or age, who know they need som~ething and as soon as you
offer it to them they'll try it.

[Some further discussion continues in which P. Santoni
describes her personal experience in helping people to
use the SDL system. She reiterates the importance of
providing incentives for all levels, from management to
programmers.)

H. Stuebing: I can tell you that it' s very important to have
your management's endorsement, but unless industry accepts
it as well, even that management's endorsement won't be
enough. Ultimately what it comes down to, in a schedule
driven deadline situation, is the acceptance by industry.

87

If a company stands up and says, I can' t get that job done
that way, I'Ill tell you they won' t do it. No system project
office or project manager will take that risk.

P. Wegner: Suppose DODi becomes accepted and you want to
accommodate us in your shop, what would be involved? flow
would you go about it?

P. Santoni: Right now I have the environment where I'd be more
than happy to be the original site of any tool anybody wants
to bring up involving DODl. I would except that when DODl
compilers come around I would get one of them first.

P. Wegner: Would it be appropriate to have several or~ many
efforts like your own to do this?

P. Santoni: Right now the SDL project is still a research
project. It's the idea of exactly what we've been talking
about here. How do you integrate all these tools? How do
you make a really usable user facility that has this huge
range of tools? There is a proposal which, as far as I
know, has not yet been acted on, that says there should be
at least a half dozen sites equivalent to what I've got
right now. in our case again around the ARPANET, but that
isn' t even a necessity. So there should be several
geographically expanded or distributed sites for something
like this. ... It's very important that the DODI be willing
to set up these kinds of shops.

K. Bowles: I'Id l ike to make a comment. Some of you know that
we have a stand-alone software system based on Pascal that
runs on small microcomputers. We've been observing a
phenomenon that I think probably could be brought to bear on
this spread of PODI in trying to spread our own system and
spread the use of Pascal. And I think it would at the very
least relate to those programmers who work with contractors.
I can't really predict how it would impinge on programmers
who work for the military agencies hecause of the slightly
different groups of people. But in an increasing number of
cases we' re noting that where commercial firms have decided
to commit to the use of our system that it's often happening
either coincident with or possibly slightly after the
individuals on the programming teams have decided that they
can afford to go out to a computer store or an equivalent
place and buy a machine which is able to run our system. So
these professionals are taking home the Pascal-based system,
learning to use it and love it, and then have enough
information about it to bring it to their work environment.

Within a couple of years this system of ours is going to be
available widely on machines costing in the $1,V00 to $1,500
range, if not less. There's no reason from an engineering
point of view from all we know or are able to predict at
this point about the DOD language, that the same language
couldn't be supported on only slightly larger machines. so
if it' s a better lAnguage you ought to be able to build upon
the class of people that we' re already reaching or will have
reached by that stage and quite possibly take advantage of

88

that phenomenon. I think it's non-trivial phenomenon from
what we've seen.

[Some discussion ensues regarding the technical
feasibility of hosting all of DODl on a microcomputer.
No firm conclusions are reached.]

W. Loper: One of the things that we had in mind when we were
thinking about this topic was some form of informal users'
publication and program exchange.

P. Wegner: Like the Pascal newsletter?

(Unknown] :Or Interface Age.

P. Wegner: As a matter of fact, I think you should consider
having a newsletter that initially has some funding support
in connection with DODl activities. That could be done from
the top very easily. The DODl News -- it's an activity that
needs to be arranged. It would be very worthwhile and you
should perhaps consider starting it within the next six
months.

N. Finn: Between the newsletter and the P.R. campaign and the
support teams and the generation of all the new tools and
everything, I think Col. Whitaker could build himself quite
a nice empire!

P. Santoni: Given that list that he just enumerated, I am not
sure that DOD is really cognizant of the large dollar
investment that's going to be necessary to make this thing
transfer. I have no idea what the PODl budget looks like.
It's one thing to talk about what it' s going to cost to
build compilers and to copy those things and send them out
to various hosts and how you persuade contractors, for
instance, to write tools for the language. It's a whole
other thing when you're talking about the technology
transfer and you get the whole people issue -- that's
dollars.

P. Wegner: Col. Whitaker, has there been any projection of the
cost of the technology transfer? Will you tell us a little
about that?

Col. Whitaker: It's very carefully buried in a 1.2 million
dollar per year item, actually.

P. Wegner: You say it's buried within 1.2 million dollars.
We're talking about ten or twenty million dollars at least,
aren't we? Could you just enumerate those activities again?

N. Finn: We had ads, demonstrations, support teams, tools that
wo rk.

P. Santoni: You' re talking about equipment too. [Also the
ARPANET.]

P. Wegner: I think it would be appropriate to identify this

89

technology transfer activity with a statement of what is to
be accomplished.

[P. Wegner solicits volunteers to draft such a statement
and the session closes.]

AD-A089 090 CALIFORNIA UNIV IRVINE DEPT OF INFORMATION AND COMP-ETC F/S 9/2
PROCEEDINGS OF TIE IRVINE WORKSHOP ON ALTERNATIVES FOR THE ENVI-ETC(U)
1978 T A STANDISH DAA629-78-M-0219

INCLASSIFIED UI-ICS-78-83 p.

24 fflfflfllfllflfflf
inunuunuinnnlllllnuun
-EIIIIIIIIIIu
IIIIIIIIIIIII
-EEEEEIIIEE**
-i---..-iii

all,,11111-, 1. 1

MICROCOPY RESOLUTONTSTCHR

90

Session IB: Requirements Analysis
Henry Stuebing, Chair

H. Stuebing: Let me begin by reading paragraph 7.4 on
Requirements Generation Tools from the preliminary T)oD
Common Language Environment Requirements of 15 May 78. "A
method of cataloging system requirements in order to test
throughout development for requirement compliance will be
provided. This capability will be similar to that of the
Problem Statement Tanguage/Problem Statement Analysis
programs (PSL/PSA)." The only other system that T ain aware
of is the SREM system that TRIW! has developed. That is just
one computer system in an Army application. geepinq in mind
that as a Workshop what we would like to do is to stinulate
a lot of discussion and get any kind of thread of
consistency amongst opinions. Some of the things we might
talk about are: What is a Requirement? What does it mean
to do an analysis of a requirement? What are people's
thoughts about Traceability of Requirements? How should
requirements be relatable to different statements in the
programming language? If you are going to trace a
requirement all the way down to some piece of code, how
should one do that? What are some of the mechanisms for
tracing? Our goal is to stimulate your thoughts and get
ideas flowing so we can take these two original sentences
and give them more meaning in the final document.

J. Machado: Can you define requirements analysis?

H. Stuebing: I don't know if I can define it. What I have seen
is people coming up with different approaches to state their
requirements with some degree of formality such that
requirements are storable in databases, and things like
that. Then using various techniques, or using the machine
itself to do an analysis, or testing for completeness.

J. Machado: Today's technology dqes not allow us to test for
completeness of a requirement.

H. Stuehing: That I think depends on the assumptions that one
makes. Why don't you tell us?

1. Machado: I am trying to stimulate some discussion on the
state of the art in this area. I think the suggestion that
PSL/PSA should be required is not the correct solution at
this time.

-: The requirement on the system is the relation on the
systevi element that is required in order for it to be
consistent. Relations are mathematical things defined on
se ts.

J. Machado: Here, we are concerned with requirements analysis
in terms of DoD, (if we talk in terms of the requirements of
the tactical systems). Some questions to ask are: how do
you specify the requirements of the tactical system, and how
can you trace them throughout the program to insure that
your final product meets the requirements that you've

91

listed? In the first place, how do you get your
requirements accurately specified so that you're getting
what you want? You want to make sure that you have in fac~t
a complete set of requirements. How do you find that out?

----- It depends on your Thigh levell requirements and your
requirements on a program.

A. Irvine: I have a problem with this definition. our
terminology says you do some analysis or do some
requirements definition to define the requirements. It is
much more concerned with the relationships between the
systein and its environment than among system elements.
Design begins to consider the relationships among the
elements of the system.

h. Stuebing: Let me propose a problem that we rtay run into. it
is a fact for any level in the design process, the level
above it is the requirement in terms of the level that
you're working on. This is just inescapable all the way
back through the system process. This is why I brought up
the question of what are we talking about when we talk about
requirements analysis. I think we have to define what level
of the systems design process we're going to hold our
conversations to and then talk about what applies in the way
of supporting environments. I dlon't think the Workshop can
proceed any further until we have common understanlinq as to
what we mean when we say requirements analysis. What level
of this system desiqn process are we talking about? Are we
in front of the actual design. Are we right at the
beginning stages?

R. Balzer: But Al's definition still holds if you take the
right interpretation of the environment. That is, as you
get further into the construction process. your environment
shrinks. More things are outside of where your concern is
and therefore are fixed and are no longer under your
control. The requirements have to do with the unspecified
part of the system. You'll be replacing those things with a
inethod of attack. Once you do that, your concern goes into
a smaller shell where more things are fixed and you have a
smaller set of things yet to define. I think the notion
that the environment is the place where the requirements
deal with the environment is quite appropriate. You are
taking things out of that environment. You are defining
things and placing them outside your scope as you go down
into successively more detailed levels.

H. Stuebing: We have frequently done that and it is simply in
terms of that context. The requirement for the next
operation is a carefully bounded context.

R. Balzer: To put it in terms of DloT technical development
requirements for the highest level document: "How do you
analyze requirements to make sure that you are doine what
you want, and how do you trace them throuqh the system?"

A. Irvine: I suspect a more common meaning is that 3f "initial
requirements, which defines the requirements of the whole

92

system.

Ii. Stuebing: I don't think that's the level here. One can get
into the operations research end of the game where people
are challenging the need for the system. Rather, it says,
"systems requirements" in the sense that it is given that
this system is needed. There is some level of statement
from an overall fleet or service standpoint that says it is
needed. Those documents are very high level. Now, we are
going to build this system. This specifically says system
requirements. As soon as I see the word "system", it means
to me hardware, software, man-machine interfaces --- all
those things.

a. Machado: I would argue that you don't get into
hardware/software tradeoffs at the requirements level, those
are implementation issues.

------- You want to make sure that the set of requirement
processes that you jo through say that this is the
functional part of the system, that it is consistent, and
that it is complete, i.e., that you haven't left something
out of it and further that you haven't been redundant in the
specification of the requirements.

------- It also implies tracing to make sure throughout the
system that the requirements are met at each level. There
is somiething missing from this discussion. Section 7.4 says
"test throughout development for requirements compliance".
That suggests to me, as someone mentioned, that each
person's requirements are imposed by the person ahove him.
We have got to keep in mind that we're talking about
requirements all the way down to the lowest level which is a
nested set of requirements.

R. Balzer: No, I disagree. What you are saying is you trace
requirements. The traceahility is that which you test at
every level to make sure the requirements of the higher
level are embodied in that level of design.

A. Irvine: The only way you can do that in practice is to treat
each level as the requirement for its successor. You test
for consistency with its predecessor.

------ :I don't disaqree. I think that, as stated, there is a
hierarchy involved with the requirements. I think you have
to start off at one point and define what your problem is,
and then you can iterate that particular process down
through the design, But if you start to try to attack from
the iteration, to start off with, you can get lost in a
maze,

h. Stuebing: Are there experts in the room on PSL/PSA? Perhaps
we can learn what is the state of the art in formal language
specification requirements.

A. Irvine: I know something about it. The most significant
characteristic of it, as far as I'm concerned, is that it is

93

a narrative language. To me that is important. It is
essentially a language which has assinned a set of
interesting verhs and nouns. You can observe interestinq
characteristics about those key words. For example, it
assumes that if you tell it A. uses B,. R will be used by A.
That's the basic nature of the way the analysis is done.
You can write hierarc hical definitions, very much like you
can in a nested programming languaqe. It produces formatted
reports.

------ :Why is it not sufficient at that upper level?

A. Irvine: I have used it a little bit. I have seen it used in
systeiii docum~entation. I cannot visualize what is going on
in the design fromi that kind of documentation.

R. Balzer: Basically PSL is a dataflow model of a system. it
tells you how data originates in some models and flows to
other models and is used as inputs and outputs. It worries
about the interconnectedness. It really is a flow chart of
data. The thing it does not address is what the
interpretation of any of that data is. it doesn't tell you
how that data was created. Functionally, it tells you where
it was created, i.e.,, in what module, but it doesn't tell
you how, and it doesn't tell you what the interpretation of
that data is. That is, what its semantic content is in any
form. That's why it doesn't address a lot of the issues
that are very important in requirements analysis where you
are wondering whether or not this fulfills some requirements
because you don't know what it is. You just know that
there's something there, that there is water flowing througih
this pipe. You don't know anything in detail. That's the
reason for AI's comment on its being very useful in
maintenance, where it's very important to know where data
originates. PSL/PSA tells you all that but it doesn't tell
you how it is achieved. It's one cut at the issue of
defining what goes on in some complex system. Lots of
people have recognized that we need something more
sophisticated but there's something that exists, it's
proved useful, and we have to sort of go beyond that now.

P. Freeman: Let me add one last thing to that. It is a
documentation tool. It is a language and an analyzer that
helps you express certain things used for requirements. It
does not tell you much about how to come up with those
requirements, or to check semantically whether that is the
right set of requirements with respect to the outside world.

It is not a methodology for developing requirements.

R. Balzer: It does catch certain kinds of inconsistencies in
the specification. For instance, it does do unit checking
on types. If you have an output in feet per second and you
need it in miles per hour, it recognizes that there is an
inconsistency and tells you where the sources are.

------: I would like to give another view of it --- more of
a generic view. it is a database oriented system where
there is a mechanism for recording the Informatinn in a
database and taking information out of the database in forms

94

that are useful to people. The basic concept of the
database is identifying objects that the user is concerned
with in his application, attributes of those objects, and
relationships between one object and other objects. That is
the basic underlying structure. If you are not happy with
your narrative language in PSL/PSA, you can construct your
own narrative language, particularly suited for a particular
application. So to follow up on your your comment about its
not having the semantic information, it would seem to me
possible to add descriptive attributes or even paragraphs
that you can put in during the machine process. I think the
significant thing is that it is a way of recording
information that is easy for people to interact with and it
describes the system from the point of view of the user.

JPrescott: The intent with the environment document is to
define the environment for Do~l. We are trying to make a
successful project implementation of some set of
requirements. Perhaps we should have stateO in there
software system as Hank said earlier. You are given some

statement of work, and you want to translate that statement
of work, which has your requirenents in it, into some
functions called programs. At the end of that whole process
you want to be sure that you have built what you have
contracted for. You build back to those requirements. You
would like to have, as you are going through the development
process, some way of knowing why you are building a
particular piece of software. The reason you are building
this piece of software relates back to requirement 3.2. Now
recognizing there is no one tool that does all jobs in
development, you still have to pick some. So you pick
something like this Problem Statement Language which helps
you define what the requirements are, and the Problem
Statement Analyzer, which takes that language requirements
definition down to another massive set of programs, and
gives you some help in finding errors. Fifty percent of our
problemms today in building software are design type
problems. You want to find them early. This type of tool
helps out. Picture the environment for construction of
programs. We have many tools, one of which is some
technique which starts from the statement of work and traces
all the way down like through a big matrix. Like here are
the things that you must do with this software system, here
are the programs that you have built. Now picture some
checkpoints in here. This program fulfills requirements
here, and this programn Fulfills these other requirements.
Think of the beauty of this as you go along b)ecause
requirements have heen known to change half way through the
project. What you would like to have is a way of knowing
which programs are affected by these changes. This
particular set of programs that I mentioned in the document
was developed at the u. of Michigan. There are a number of
other types of programs that do very similar kinds of
things. I put a very specific case in the preliminary
PEBBLEMAN document because that was the one I was most
familiar with. Understand what we are trying to accomplish.
We are trying to find not one big tool, because there is not
one, we are trying to find all those tools that we need to
help us in every place along the development cycle.

95

Hi. Stuebing: In one of the related papers by Psick Taylor, from
Boeing Computer Services, D)ick has a couple of dIiagrams that
hell) summarize these points.

R. Taylor: There are two of them attached on the hack of the
position paper. These capture some of the things that have
been nentioneti. You have all seen the classic waterfall
chart, andi you probably realized that we rarely have a
"true" waterfall. As requirements change or design problems
are discovered, you find the need to qo back to a previous
phase in the program development. The thingj that I find
interesting is this picture (Figure 1). The thinq that we
are doing in this box is making some formal statement of
what the system should do (Requirement Analysis) . The
things we need to do at that point are: l)ne, check that the
statement we have made of the system is internally
consistent. Two, we need to check that we do capture the
user's need. Then as we go on to refine the problem
solution in prelimainary design, the same situation happens.
We probably have a different external representation of our
solution, but we need to check to make sure it is internally
consistent, and check that it goes back and really does
satisfy the requirements statement. The same thing happens
in detailed design. I am most familiar with that kind of
checking being done in coding. We have static analyzers and
symbolic executers and so forth. Most automated tools have
been directed at code. It's Boeing's view that these kinds
of analysis should be done in all stages. The interesting
thing is that the nature of the analysis is the same in each
of those phases. Only the external representation of the
solution we have chosen has altered. So, we can
conceptually think of having a requirements language front
end, a detailed design language front end, and so forth, all
forming some sort of common representation in the
program(Fiequre ?). On that we can do the verification we
need using whatever techniques are appropriate. For
example, it might be really appropriate to use symbolic
analysis and formal verification at higher levels, like
requirements, since we don't have the level of detail there
that we do when we get down to code. By the same token,
it's hard to do any kind of dynamic testing on requirements
since you don't have an algorithmic specification. There is
another item I want to mention. Something that was referred
to earlier, is the program database. I think we ought to
keep in mind that one of the big problems in creating
software is providing appropriate management. That is the
whole motivation in doing a lot of work in requirements in
the first place. If you get a really rigorous specification
of what you want to do, then you have some ability to see
whether you are solving the right problem or not. The
database is a common repository for everything known about a
developing system. Further, we haven't used PSL./PSA to do
this. Boeing has it's own tool called Skmmv(Systematic
Activity Modeling Methodology) . There is justification for
that. The- statement I have heard about PSL/PSA is that, as
a requirement specification language, it makes a good
detailed design language. But SAMM attempts to really do
requirements analysis.

96

J. Prescott: The word verification is a little bit tricky and T
have the feeling that it means something different when it
sits under the word code than when it sits under the word
requirements. Would you say a little bit more allout
precisely what you mean by verification?

R. Taylor: When I use the word verification I don't usually
mean it in terms of formal proof of correctness. I would
say verification is showing congruence of one step to a
previous step.

S. Cracker: You made some reference kind of quickly at the
beginning where it seemed to toe you said that these formal
techniques, symbolic execution and formal verification,
might be more applicable at the requirements end than at the
code end.

R. Taylor: Right. The problems we are seeing with symbolic
execution, (and I can't speak for formal verification) is
that when you apply them to a bonafide proqram, you have
such an enormous amount of detail that the processor that is
doing the verification just get's bogged down. It's not a
very efficient technique. whereas at higher levels of
program representation, say the preliminary design, there is
less detail, and at that point you may have more success in
the use of symbolic execution.

J. Machado: I believe we should request that some tools be
developed to model the requirements. I think you have to
present some type of a picture to the user as to what type
of system he is going to get. You can do this with a
modeling tool. He can get some kind of an indication as to
how this system is going to respond to what he has submitted
it to do with his requirements. You will get some
validation that way, that the requirements are what you
really meant. In most cases, we end up writing a set of
requiremaents which aren't what we meant.

E. Nelson: I think that is terribly important because while
reducing the requirements down to paper makes the user look
at and read them, he may not comprehend fully what those
statements mean. He can say it represents a complete list
when it doesn't. If you produce a simulation in your model
and he looks at the results, he can see that that's not
right or good or that he's getting the wrong answer for the
wrong kinds of thinqs. Then you determine what is wrong
with the requirements statement. Modeling and simulation
catches that early instead of waiting until the program got
written and then seeinq the outcome is obviously wrong.

R. Balzer: There are two things I would like to say. First, we
have only talked about one kind of requirement so far.
Essentially the logical processing requirement. we have not
talked about performance requirements and, in general, they
tend to be more difficult despite the difficulty we are
having with logical requirements. The other thing is that
there's been a thread running through a lot of the comments
made that's important to capitalize on. Basically the same
process is being repeated over and over during the

97

development of programs, from the very beginning of the
requirements down to the final coding. People are taking
what is conceived of as non-procedural at that level and
substituting a method for achieving it at the next lower
level. If you think of a hierarchy of loqical machines,
then the objects you use for describing things at one level
become non-procedural clown at the next level andl you have to
go through further expansion. if you take that kind of view
point, I think that one can make an awful lot of)rclder out
of this whole life-cycle development process because you are
doing the same thing over and over aqain with the same kinds
of tools becoming useful at each of these staqes.
Essentially, you can model at any level in this process by
having an interpreter of the machine that exists at that
level. That interpreter may be extremely inefficient, but
you are willing to pay that price to get an idea of whether
the system is going to behave as you want. Also you can do
your tradeoff analysis.

S. Crocker: I have a very strong theoretical agreement with
you. When I play that back against any sort of real life
experience, there are a couple of issues that coime up. One
is that although the tools are conceptually the same and may
be the same on a theoretical basis, the specifics are so
wildly different that one winds up building different tools.
The semantics are different at each level. The other issue
is that the numbers do really kill you. one can't just sort
of wave one's hands and say that at any efficiency we are
allowed to do that, because what you need for debugging code
at a very small low level needs a certain response and what
you need for debugging your requirements at a very high
level also needs a certain kind of response. The
mechanisms, the interpreters and so forth, have not so far
been able to come through in all these different areas.
Also, these underlying semantic dlescription mechanisms that
we have are kind of different in all these different levels.
So although there is kind of a theoretical appeal, and I
helieve that the pattern is the same, T think we are quite
some distance away from demonstrating that the same tool
will be applicable at all these different levels.

J. Machado: I agree with Steve that although the process that
you go through in requirements analysis design, anti
specification look alike at each stage of the process, the
tools that support them are indeed different. At some
stages, you want analytical tools and at some stages you
want simulation type tools.

A. Irvine: I will try to summarize some things about
SADT(Structured Analysis and Design Technique) that are
important in the context of this workshop. SADT places a
great deal of emphasis on how one arrives at the resulting
requirements, and on the thought processes that are used and
how those thought processes are audited. A lot of emphasis
is placed on human factors, e.g., how, through commenting
and critiquing, you manage to improve the quality of the
requirement specification. The significant characteristics
of SADT as a language are that it's a graphic language and
that it produces models. I argue that the reason the

98

graphics are important, is that in the analysis of any
complex system, what you really have to focus your attention
on are: the parts arnd pieces of which it's going to be
made, how you determine which are the appropriate parts and
pieces, and what the relationships, interfaces, and
constraints among those parts and pieces are going to be.,
It's my experience that only if given some well defined
pictures, can one review with any kind of understanding what
the statement of requirements is. So what we do with SADT
is construct a few rules which carefully constrain the kinds
of pictures we can draw so that the pictures are readable
and understandable. These pictures are distinctly
constrained diagrams. They show constraining relationships
among the parts and pieces. It's only by seeing those
constraints in at least two dimensions that anyone arrives
at a real understanding of what the statement of
requirements is all about. I should also point out that we
do represent in these analysis all kinds of
constraining requirements, the ones I mentioned earlier-
performance constraints, manpower constraints, use of
equipment, use of programing languages, etc. There is no
detail level that can't be expressed as a requirement. The
other thing is that SAPT places a lot of emphasis or. the
thought process. It tries throuqh the methodlology to make
sure that people who are doing the work are constantly in
the process of moving back and forth between analysis and
synthesis. That's the essence of gettinq the job done. You
take the things apart and then you see how they go back
together again. You look at their differences and then the
similarities

3. Machado: In other words, you are going through a lot of
thought process. What about the customer out here, the
b uyer .

A. Irvine: I have personally worked on projects where the sameI
document was reviewed by the people who were going to fund
the project, the managers in the user organization who
didn't know anything about computers, the manager's in the
implementation group, the implementation people, both
hardware and software, who are going to build it, and the
people from the field service. Every one of those people
read, reviewed, and approved the same document.

-----: Something Dave Fisher mentioned that I hadn't heard
before is that if the tools are written in D)OM, they will
be more transferrable. How much is that a real constraint
on of what we are talking about? Are we talking about tools
that eventually would really have to be written in n~o~l
before they got into general use in connection with DOM~
programmiing effort, or is it a possibility that one might
pick up some system that's already written in some other
lanquage and try to make It widely available still in that
language.

H. Stuebing: I'd like to tell you what my impression is, if
I've understood you. The implementation of the tools in
DoD1 is not our primary concern.

99

R. Balzer: Let me argue that case. If you do not require that
the tools be programaed in DODI, then you will have no way
of insuring compatibility of environments that exist on
different machines. For the same reason that you would like
to have compatibility of the language on different machines
the compatibility of the tools used for program development
is just as important. One of the largest reasons that
programs are not portable is because of the environments
they exist in, not the languages per se. I think it would
be a crime to allow the development of different
environments just because you happen to be in a different
machine. There's goinq to be enough diversity because the
tools themselves are not going to mesh very well with one
another, and new tools are going to he constantly brouqht
into this environment. We should at least maintain some
order by having them developed in DoDl.

100

Session ?9: cSystem Design
Clem McGowan. Chair

C. McGowan: In this particular area the Pebbleman is completely
lacking. it has just a few sentences. ... It says
"program verifiers tested in a mathematical fashion used to
see that the program corresponds to a given specification in
a design language will be required." One of the few things
that is mentioned about design is that they're calling out
for a design language. Something that may be a corollary to
the commron language is that there will be a common design
language ... It says "design tools required will be those
which support a methodical design process". I have a
question as to whether they're talking about a specific
process or not and feel that the words "which support
systematic design" might be better substituted. ... (it
says) "Programs will be available to support a design
language by testing syntax correctness, formatting, and
proof of correctness." Here we have a second mention of
verifiers or proofs of correctness and there is an issue as
to whether that is to be developed or is it suitable to
require it now in the late 19701s. "The design capabilities
will be able to compare it to the requirements." Here in
very general terms they seem to be talking about something
like requirements traceability. .. 7.6.1 says "Methods
will be required to translate programs written in a design
language to the common language." So we're not only supposed
to have verifiers hut methods to make this transition from
design to code. The final section ... (says) "Inteqration
tools which will assist in fitting the indiviOdual proqrAMS
into a system will be required." ... Something tha;t's not
mentioned here under design is specifying a datahase
interface along the lines of the CODASYL group. Should that
be part of the language? ... I'd like to now ask for
reactions to these specifics and to the desirability of a
program design language and an automatic tool to support it.

G. Fisher: Is this program design language also to he known as
a specification language?

C. McGowan: I would say not. ... (It would be similar to the)
Caine, Farber and Gordon tool that supports writing down
flow of control with some data declaration capability (which
yields) a representation of the design prior to getting to
code. You have free formatting and you get the cross
reference listings for declared data items. ... It's a
design language where you can introduce English language
imperative verbs as operators rather than use the restricted
operator set of the T~oDl language. Pebbleman seems to be
asking for automatic support for the use of such a program
design language. ... I think a natural consequence of
using a common design language like this will be to chanqe
some of the standards regarding appropriate deliverable
documentation. For example, flow charts may go out the
window and POL may replace it.

R. Balzer*. One of the things that bothers me here is that we're
asked to talk about tools for a part of a process that we
see as ill defined. We don't know what the boundaries are

101

that separate program design from specification languages
and requirements languages and so forth. I think that
there's a fundamental reason why this confusion exists. it
exists largely because of manual, historical reasons.
Somebody in the past has made a division and we have
different languages for describing these various aspects of
the construction of programs. There comes a point which you
reach at this development where you say "that lanquage is no
good anymore" and some other language is much better, so
I'll make a block transfer from one language into another.
For every language that you pick there is some point at
which you reach that boundary and go to the next one. So
it's very hard in the abstract without knowing the specifics
of the language to understand where that houndary is.

Let me propose an alternative model. ... What I see , and I
think lots of other people see, is a lot of commonality in
the movement from requirements down to actual code. In the
whole span of activities, what one is doing constantly is
taking things which are nonprocedural at one level,
substituting a method for accomplishing them at the next
lower level, and if we could build a language which spanned
that entire spectrum so that one was making refinements or
elaborations within the language of constructs at one level
into the next; and then you could go piecewise between the
very high level specification and your ultimate code. You
may find that you want to carry some of those activities
further; one part of the program is developing before you
deal with aspects of the other, and we would get away from
this arbitrary translation from one level to the next. You
put m~uch more in semantic units, deal with things that you
felt were important. I think then a lot of this confusion
would disappear if we could talk about on a logical level
the kinds of tools we support, the elaboration of
nonprocedural aspects of a program. That's what I think the
whole process is abouit.

C. McGowan: ... I have some difficulties with that myself. For
this discussion, I think we should use as our groundingl the
proposed common DoD language so there's an identified point
along your spectrum. It may be that the TPoTl is not
extendable upward to be that comprehensive language that
allows you to go from soup to nuts.

R. Balzer: What you're saying is that the bottom endq of the
spectrum is DoDl by definition. Ir'm quite willing to live
with that. Consider a language which contains DoYIl as a
small part of it. One starts by describing a program using
other parts of the language so that you gradually make the
translation into things which are DoDl. when you get all
done, though you're still in this same language, everything
is now in the part of the language that is common with DoDl.
There's certainly no reason why we couldn't define things at
a higher level which look very much different. For
instance, one of the constructs which is extremely useful at
the specifications or requirements level is a thing like all
X such that some predicate is true.

C. McGowan: I haven't seen many requirements other than in

102

University settings that have been written that way.

R. Balzer: All planes which are identified as foes will be
tracked ... OK? That's certainly of that form.

C. McGowan: Fine, we'll accept that at the present. There's
considerable elaboration needed for the identi fication
process, including time limits.

R. Balzer: Absolutely, that's exactly the point. At that level
there are lots of things that are nonprocedural without that
specification. one gradually has to define all of those
things and turn it into an algorithm. In that process of
elaboration, you can work your way down to a DoDl program.

---- :I agree with what hie said, but a couple of things bother
me. I just want to make sure that the process does not
become too detailed in one area before other areas. There
are problems where you have to combine five or ten
requirements statements.

N. Finn: I don't think that at this stage of the art we can sit
here and specify in the Pebbleman as to whether it's going
to be one language all the way from the top down to DoDl,
whether indeed we can have one language all the way that
DoDl is a subset of, or whether we want a definite hierarchy
of languages to keep from going too deep on the top level.
I think that we can specify here that we need some sort of
problem definition language, and that we need some sort of
trail from the top to the bottom. We have to have such a
language or hierarchy of languages, anrl we have to have some
sort of automated means of verifying that eAch level of the
design process Fron top to bottom is indeed an
implementation of the design specified by the level ah)ove
it. If we can establish the correctness traced from top to
bottom and from bottom to top that's about all we can do
here.

(A short discussion was unable to decide whether a single
or multiple level structure of language(s) was
appropriate, or whether verification is "a research goal
or a reality".]

T. Standish: I would really like to understand something about
the nature of current technology that supports designs in
any representation that anyone cares to mention, and what
specific things you can do with those design
representations, particularly in the nature of tools that
help do whatever you can do with them, like check for
co~nsistency, or see if they meet the requirements, or map

-a down into something more concrete, or whatever. What
..6 the nature of the current technology and what does it do
for you? Is it any good?

---- :I've been involved in one attempt to provide such a
technology. (FIOSi It was initially based on the experience
with the Apollo project. They revisited the Apollo project
and looked at what steps they went through in the
development of that system. . They came tip with a

103

re4uiremfent to try to reduce the testing at the later stages
and bring it up to the front end. In the attempt to do that
they formulated certain axioms that one should follow. If
you follow them you automatically assure interface
correctness. It wasn't a methodology to try to prove this
system correct, but it was a methodology of trying to reduce
the testing and to show direct interfaces where most of the
errors were found in that project. They came up with the
six rules, they developed a language which performs to those
rules, and graphed a method which also performed to the
rules so you could either define your system graphically or
use this language called ACCESS, being developed by the
Navy. Their methodology has been used on limited projects.

(The speaker goes on to describe uses of the system by
machine and in paper exercises.1

C. McGowan: I personally feel that we want to avoid building A
particular design method into Pebbleman. We might extract
out whatevier we define as useful from 90S.

..I want to return to traceability from the
requirements. Should we pin down the context? For T~oD1
embedded weapons systems being developed, we can think of
the starting of design as being the specifications. we'll
have sonething like the program performance specs, and given
those in some standard form, let's start the design process
from there. A major consideration is the traceability of
requirements. Let's get some other case histories.

P. Santoni: ... There are languages in system design that stand
alone as languages. PSL is an example of that. You don't
have to have a methodology to use PSL to do anythinc4 you
want it to. There are methodologies that exist which have
no languages. by methodology I mean a set of concepts that
says this is how you go about trying to divide up a system.
There are projects that combine the language idea and the
rtethodology idea. I think one of the paramount things,
especially when you're talking about a DoDl environment for
development of programs in this language, is that we're
talking about a computer based environment, and I think one
of the primary things we might adid to this system design
tool area is that the tools indeed be computer-based. You
take something like AXES; it is capable of being computer
processed. ... There's been only the attempt of Hughes to
put toqether structured design concepts with a language. So
sometimes you find one or the other. Tt's a question of
whether you have something that you can make a
computer-based tool out of. T think that without that
computer-based tool, you're never going to he able to do all
the traceability things you're talking about. ... That's
one of the things I'd like to see emphasized in that
section. Computer-based tools.

R. Balzer: You can talk quite specifically about the kinds of
activity that are necessary to translate from one level to
the next. You've mentioned some already. There is the
traceability issue: that all of the requirements that exist
above one level are somehow met in the implementation that

.1 Ii I -~~- --- --- 104

we chose. We need some tool toward analyzing the
requirements at the level that we're working at to give us
some notion of the tradeoffs between the different ways of
meeting those requirements. So we would like some sort of
analysis for simulation tools that we could use to do these
kind of tradeoff desiqns. We'd like some tools that suggest
different implementations; that is: what are the different
known ways of meeting a requirement that exists at this
level? That might just be a cook b)ook of useful techniques.
Then we would, of course, like a verification that says that
this total object that we have created matches the
specification at the hilhest level: that's our feedback
rule.

C. McGowan: ... We must bear in mind that if we have ful~l
traceability, full consistency checking, analyzing, etc.
and we have everything in the machine, that we still may end
up with a really lousy design.

A. Irvine: Just as when we deliver a common programming language
we are not guaranteeing the quality of the programs. There
is still a creative process and just as yoa have programs of
varying quality, you also have designs of varying quality.

C. McGowan:But the question is to what extent can we provide
assistance that will make the design process easier, more
manageable, more controllable, that will interface better
with this language that will be on the immediate horizon.

J. Esch: Program design languages depend on what you can
express in them to hring out the creative nature of the
programming task. what could be agreed on is what kind of
information you need to record to specify the Oesign.

..The types of information that need to he recorded are:
what the parts are of the program, what the purposes are,
how they relate to each other, in both data and code, and
then the overall algorithms.

N. Finn: I think we are going a little too deep there (because)
I think there is a great deal of difference between the
current methodologies for controlling software design
efforts. They have totally different databases. ... I
propose that we put in the spec ... a list of items that we
all agree on. We have to have traceability, verifiability,
consistency at each level, and a computer base. We all
agree that we need that.

J. Machado: I keep hearing software, .. The system design
process is by far bigger than the language and the
"software". The computer happens to be one component of the
system. My first supposition is we are talking about the
wrong thing. We shouldn't be talking about software, we
should be talking about systems design, literally systems
design and not software. The language just happens to be
how you implement the software portion of the systems
design.

(This starts a discussion of whether or not the software
aspects can be factored out of the total systems design

105

task. C. Mc~owan points out that some of the
methodology developed for monitoring software will be
useful in other areas, although there are certain
problems that seem unique to software.]

P. Elzer: .. ,. I really see :oedifference between software design
forbeter omptersystems and the overall systems design.

... t i no wis atthemoment to only talk about
softare bu ontheother hand, I think we are giving the

language effort itself too little credit or we are too
skeptical if we say that the language will not help to
improve the design process. What I have seen is that the
abstraction technique will have some impact on language
design and will be in the language in one way or the other.
So it may well turn out that the language itself is kind of
a tool which helps to create several abstraction levels
above it. At the same time, we should look into hardware
and software design aspects.

C. McGowan: ... My own belief is that there are fundanental
differences between software and systems. For example, the
fact that systems designs are like wiring diagrams anti
there's a one to one correspondence between what you write
down and what will he built. Whereas in software you can
have one instance for example, processes and many recursive
replications. So there's not one to one correspondence
between the diagram and the realization.

(The participants discuss the need for the ability to
handle non-software problems, and to allow for the
processing of drawings anc! other non-software components
of the design. T. Standish points out that a text editor
and the English language will allow for the capture of a
design, but that an important issue is the processing
that you can do on the stored representation. C. McGowan
attempts to get the participants to make such a catalog.

N. Finn suggests horizontal consistency (i.e. within a
design level) , and vertical consistency. A. Irvine
discusses the need for traceability from the top down
(all conditions handled) , and the bottom up (everything
here is necessary).

Another issue discussed is the desirability of enforcing
a top down methodology. It is pointed out that very
often the lower level choices are constrained by the
desire to use previously developed subsystems.
C. McGowan points out that the ability to reuse
subsystems has not been used effectively in previous
software efforts.1

T. Standish: I'd like to return to an earlier question: Ts
there any current technoloqy that you can identify that has
those properties?

C. McGowan: There are a lot of them around that tell you how to
design and in some restrictive cases they work. We can list
out things like the Jackson method, the Warnier/Orr method,
Constantine structured design, using Bachman's data

106

structure diagrams, the HOS.

R. Balzer: These are all guide lines for manual interpretation
but there is no tool I know of that 3iven a specification at
one level will suggest to you %1 different designs and say
"choose among these."

FThe discussants agree that present technology has
attempted to process designs via some automatedI tools,
but that there are no tools that assist the diesieyn
process. Such tools, could, for example, present
alternative sets and recommendations.)

P. Santoni: ... I believe design is a very fluid creative kind
of process and it's going to be very difficult in your
generic, tactical system for anything, including a human
being, to generate all the possibilities. What we do have
are concepts. In particular, the methodology that we have
been sponsoring, the Hierarchical Development Methodology
(HDM) , is the closest thing I know of right now that has
concepts of design built into a language supported by
various consistency checkers, completeness checkers,
hierarchy managers, and various levels of checking to make
sure everything fits. Now it's got the same advantage that
HOS0 does; what they have done is set down a set of rules.
(HOS has six axioms.) If and when they get that analyzer
built , they'll write something in AXES and then the
analyzer will pick out errors according to these six
criteria. I like very much a lot of the work that has been
done with structured design. The problem is that there is
no set of rules in structured design that you can tell the
machine to check for. HDM has a set of concepts which are
enforced by the tools and the specification language
SPECIAL. We are using it currently on projects for the
miil itary.

C. McGowan:The HOS approach and others such as SzknT show the
value of making interfaces visible with automated checking.
Interface monitoring is one (facility) that I would like to
add as a requirement for a tool supporting the design
process. It is a very essential part of design. ... If we
think of design as breaking things into parts, the interface
is going to be the glue tying them together. You need to
make that explicitly visible and controlled, particularly
with-some automatic support.

R. Balzer: But I don't understand how that is any different
from the self-consistency that you talked about for this
particular aspect of consistency. Namely, the kind of
message that one guy is going to send is the kind of message
the other guy is willing to accept.

C. McGowan : In DOD oriented software development a normal
design deliverable is the Interface Control Document. So
you may as well have software support that helps you produce
it. Making interfaces visible has high leverage from a
management point of view because it allows some kind of
parallel development.

107

R. Ohlander: Another problem in that area is system
integration. ... It is the biggest sinqle problem of
development, and it needs more visibility.

[R. Balzer suggests the development of a tool that would
look at the overall design and point out areas that are
sensitive, so that one would be able to tell which parts
are especially critical. C. McGowan suggests some of the
possible definitions of sensitivity: high use in terms
of interfacing modules, and high impact on performance.

It is pointed out that one difficulty with this is that
parts of the design can still be "ambiguous" in that they
haven't been addressed yet in the design. Others suggest
that measuring performance in general is difficult.1

J. Machado: Whatever that tool is, it should be able to take
any existing module's actual performance statistics into the
tool and deliver more accurate overall predictions. When
you've got the entire system implemented, the predictions
should correlate exactly with its implementation. So the
tool in the beginning is an estimator and at the end is
actually the evaluator. There should be a one to one
correlation.

N. Finn :... To really do that you've qot to have a nodel of
the system. To know how much some routine costs you have to
know how many times it's going to call each of its
subroutines and how much each of those is going to cost.

R. Balzer: ... At every level in the structure, we're going to
want to do performance evaluation or estimation. As we get
down to lower and lower levels, more and more is defined and
so we're relying more on the evaluation part and less on the
estimation part. You take a look at any of those tools that
are up there and we have the same range of capabilities that
they have to operate over. As you are operating in the high
levels, there's less of the system defined and so therels
more a symbolic reasoning process that it has to go through
to figure out what are the range of possibilities for
implementations that could exist there. In fact, in
general, you're going to find that your tools will be weaker
at the higher level because they have to deal with the range
of possibilities instead of one very concrete thing that
they can analyze. We want the same kinds of information
out, we want to be able to deal with the same kinds of tools
using the same commands to find things out, and what we find
is stronger and stronger versions of these tools as we get
down closer to a concrete program. That's why what we're
really specifying here is the kinds of tools we expect to
exist in this system independent of the level that we happen
to be operating at.

3. Knight: What am I going to do with these tools that you're
telling me will be available? We have a basic conceptual
problem in a missile. Will this solve al~l my problems, is
that what you're saying?

C. McGowan: Nothing's going to solve all your problems. If

1083

you' re going to raise management issues, you better come up
with a schedule and a project plan. You're going to need
certain intermediate stages in this process in order to get
some read ing as to how much prog ress you're making. These
design tools are attempts to help you get some reading, some
control as a manager, as to where things stand technically,
to what extent is what you're working on likely to he the
product that you wanted.

J. Knight: What doe3 that have do to with the Dol) common
languages?

J. Machado: Let me reply to that, because that's one of the
issues that I brought up earlier. The fact is that the
language happens to be a component of a larger thing called
a systems requirements design development, implementation
and life cycle maintenance environment. Language is just a
component.

J. Knight: You're going to tell the Air Force how we're goinq
to do our research and development for the next 803 years as
opposed to giving us a language. All we want is a language.
J. Machado I did not say that

C. McGowvan: You're going to be using the language, and what's
going to precede actual coding is some kind of design and
probably some other activities as well. Given that we've
identified that it's useful to standardize on a language,
for many efforts, can we also identify some tools that will
help support what goes in front of using the language so
that we don't have to keep inventing the tools over and over
again. I'm trying to say, what are some characteristics of
design as a whole, that are sufficiently carried over to a
number of designs so that it is worth automatinr these tools
and shipping them to be used at the discretion of the
manager in conjunction with this common language?

(The participants go on to discuss the fact that tools
should be integrated into the system, but that they
should not be imposed by fiat. It is suqgested that the
group attempt to catalog tools which are either Dresently
available, or likely to be available soon.)

P. Santoni: For starters, the aspects of traceability and flow
consistency interface monitoring, PSL/PSA, that genre of
language capabilities. Those tools tend to rely heavily on
the human ability to do things like predict tradeoffs. It
doesn't have a simulation capability built into it. A
similar language and analyzer called RSL/REVS has some of
the traceability and self consistency sort of things and
includes a simulation capability. HDM, which I spoke of
earlier, covers the concepts of how you design a system. It
has a hierarchy checker, consistency checker, and interface
monitoring. We are working on adding simulation capability
to it. There's some work going on at BGS which will
eventually develop into a performace estimation and
evaluation tool which again will come in. The thing is that
the technology exists. The problem is that what you've had
is a lot of people researching in the area and not

109

understanding that they're in a gigantic problem area. Fach
has tended to take a little piece. Some people who started
with a language and said, "gee, we'll worry about how you'll
use it later." Some people started with the methodology and
didn't worry about languages and computer based tools.
There are a lot of people approaching it in a lot of ways.
I maintain that the technology is there. The question is
getting it integrated.

R. Balzer: I have another requirement. The requirement is in
moving from one of these levels to the next. There is a
very big step that is taken and I don't like seeing that
step existing only outside the machine. What happens is
that the next version arrives and now you're supposed to
talk about traceability and proving consistency. What youIwould like is to have the small steps that were used in
arriving at that next level be recorded in the machine as
part of the documentation for the development of this
system.

[Several of those present agree that a trace of the
design decisions would be valuable in its own right, as
well as contributing to documentation.]

C. McGowan: Final point, the Pebbleman mentioned a program
design language which I took to mean something that involves
the flow control and Oata declaration capabilities of the
source language. I think that would be a nice simple tool
that would be easily extracted from our base, the common
language.

P. Santoni: I would like to mention one other requirement.
That is that all of these tools, if they're going to he any
use to the DOD, better be capable of producing DoD
acceptable documentation.

(C. McGowan attempted to summarize the identified
requirements. He listed the tracking of design decisions
and refinements, design modelling or simulation (which
would assist performance estimation) , self-consistency
checking that hopefully would extend beyond software
boundaries to include systems of hardware, software and
people, and traceability. Traceability was discussed at
length by the participants, and it was concluded that it
included both specification of how a requirement is met,
and also verification that the specification is correct.

Other desirable capabilities included: budget
monitoring in terms of time and space, sensitivity
analysis, identification of alternatives, and the ability
to assess the impact of a proposed change.

It was emphasized that although many tools were
necessary, they should be integrated and computer hasecd.]

R. Balzer : ... We so far have been talking about the
translation from one level in the design to the next. We
have not explicitly taken into account the fact that there

110

may be many people working in parallel on either this level
or other levels also making the translation from one level
to the next. Certainly, some sort of tool that aids
coordination of multiple people working on the same design
expansion seems to be quite critical.

C. McGowan: ... On any large project you're going to want people
to work in parallel. Even designers, even analysts. It's
by identifying what their method of communicating is, what
their interfaces are, that you can allow that (parallel
work) to happen and hope to have some control over it. As
we get into implementation areas, one of the benefits of
top-down strategy is that it does that monitoring in code
rather than by management enforcement.

A. Irvine: We talked earlier about representations for design.
The representations themselves are the vehicle of
communication. It may be useful to add to our list a
separate section, the human factors of those
representations. I will suggest that in addition it woulO
be very useful in terms of human factors if there wasn't a
great deal of redundancy in the representations of the
design process. It's important that people don't have to
write the same thing down twice.

[The participants agreed that they were really talking
about two things: the use of human factors input to
influence the design representation and interacting with
the design database, and secondly, the use of computer
based tools to assist interaction between people, even
allowing for multiple languages, machines, methodologies,
etc.]

H. Steubin suggested that this implied a need for a
database to store and allow manipulation of the
representations. He felt that the database would have to
allow for sections of the design that were fixed (as in
an interface to a pre-existing piece of equipment) or
still in a state of flux.]

K. Bowles: Add to that the question of how you control the
interaction among the people in such a way that you can
evolve from one state of the representation to another state
without having to qo through the trauma of this kind of
meeting.

C. McGowan: Are you hypothesizing sort of a design sequence or
process?

K. Bowles: I guess I'm implying that one wants to make more use
of the electronics communication media.

(K. Bowles goes on to say that he desires a
computer-based tool that allows for evolutionary
development of a design by a group of people.]

R. Taylor: I'd like to add two more possible requirements.
First is the ability to analyze the design, even though the
design may still be in an incomplete stage. Second, is to

be able to specify a design which has redundant features.

E. Taft: you really mean there's a desigqn alternative that you
wish to explore.

R. Taylor: That's only part of it. I'm thinking more of my own
evolving conception of the design. I may want to keep some
redundancy in it just for my own benefit.

(A. Irvine goes on to say that this redundancy is a
temporary state that exists between the time that several
similar pieces of the design are seen to be similar until
the overall design has advanced to a state that allows
them to be drawn together.

R. Balzer conjectures that this type of activity is
one of the microscopic changes that need to be tracked by
the tools in order to record how a design got to a given
state. A. Irvine suggests that such a record is
necessary to adequately do maintenance.]

R. Balzer: ... I've argued that the way you ought to maintain a
system is to go into the appropriate level of design
specification and make the change and then just carry out
the rest of the design implementation all the way down to
the coding over again. But -- that doesn't happen. Right
now we make the terrible mistake of going into the concrete
object, the code which has been highly optimized, at least
as much as we had the energy to do, and attempt to make the
fix there. ... the right way of doing maintenance is to
just make the insertion into this history of design
development and then recarry out whatever remains.

..Most of the decisions that you have made before are
still going to be the right ones to make and everything sort
of flows through. And you wind up with a newly implemented
program. And the problem we face is that we don't have the
technology to carry out that reimplementation in a reliable
way at a cheap enough cost.

R. Ohlander: You may not have the people. ... Basically, if
you look at the type of people maintaining a lot of
programs, a lot of the talent (necessary) isn't there. Out
there in the real world, you have very low level programmers
maintaining so many systems.

R. Balzer: But there are feedback groups in all of these things
in that one of the reasons that you have those kind of
people is because of the kind of job it is nod.. If it
required less people to do it, you could afford to put
better people on it.

[T. Cheatham expresses the opinion that such a process
should incorporate consistency checkers, verifiers, etc.
He goes on to say that his experience suggests that such
a system makes maintenance enjoyable and tractable.

A. Irvine points out that such a desiqn aud4it trail
will also prevent the reintroduction of errrors into the
system.]

112

E. Taft: I think one of the basic purposes of having languages
that allow you to define highly articulated types is
precisely so that a certain amount of your design
representation can in fact be assimilated by the compiler
and I think -where we're lacking is that we lack the ability
to describe aispects of interfaces and aspects of our designs
other than types of data in a higher level design language.
But in certain areas we are already able to do that
mechanical translation. I just don't really see that we
want a cle4 'r cut distinction between the design language and
the implementation language.

(Its agreed to add a microscopic design report or audit
trail to the requirements list being compiled.]

A. Irvine: I'd like to ask a question about this history. one
of the most interesting lines in the Pebbleman is this
business about translating design language into programming
language. Is it a fact that you can do that mechanically?

R. Balzer: What Ed brought up just before was that we expect a
lot of commonality between those two languaqes and in fact
I'd go a step further in saying that we really shouldA be
pointing toware a wide capability language, the subscet of
which happens to be PoDl and that language contains lots of
non-procedural expressions, forms, that you gradually
manipulate out of the language by giving more elaboration of
the component pieces. And, you move from one subset of this
big language, which is the specification form, to the
implementation form, which is also contained in this whole
big language, and that's a stepwise refining process, and we
eliminate this need for N different languages between the
N-1 different steps.

[The discussion continues on the subject of how we get
from the top level design level to the DoDl language.
Its suggested that what might happen is that higher
levels are processed solely by the designer, and that as
one approaches DoDl, more and more automatic tools come
into play. R. Balzer expresses the opinion that the
design process often has stages in which doing design
means taking global requirements and constraints and
reducing them into algorithms. He qoes on to say that
such an activity is one reason that people are necessary.]

T. Cheatham: An interesting question if one believes that as I
happen to believe it completely. is in what notation do you
write all that down? And how do you get from that notation
to DoDl? Is it a separate language somebody goes off and
invents?

R. Anderson: Maybe that's something we can highlight as an
issue to the DOD. This conversation seems like a
description of a research project, as opposed to something
that might aid system specification in systems that can
really be deployed in the real world. I'd like to come back
to the point of how much we're specifying here, and whether
it will sink the whole ship by adding six times the effort
it takes to develop a compiler for DoDl.

113

[A lengthy debate followed, centerinq on the issue of how
far the recommendations should go and what was reasonable
to include in them. One fear expressed was that the
recommendations would become fixed and either constrain
unreasonably future development, or possilbly result in
tremendous increases in cost or overhead. others
expressed the opinion that a comprehensive list might
raise the sights of system designers, while at the same
time, the designers wotild suhset out the irleas that
proved unreasonable. The probable use of the
recommendations by the DoD establishment was another
topic of debate, as was the expected time frame for
development of the design system.]

J. Prescott: One of the comments that wa..; made this morning in
the introduction was that the test of this workshop was to
get some meat into this document and then the wills and
shalls and would likes will be worked out later.

C. McGowan: ... I noticed that Boeing had a position paper on
what an environment should be and perhaps you'd like to
elaborate on it.

R. Taylor: I briefly went through it in the requirements
session. To summarize, the activities that occur during
requirements analysis are similar to those which occur
during preliminary design, detailed design, and coding. In
particular, the verification activities in each of those
phases are essentially the same. It's reasonable to think
of a common set of analysis tools which act upon a
derivative of the various representations employed.

C. McGowan: That's an interesting variation on one language;
saying that essentially with analysis tools, we want to be
able to apply them to different stages (luring system
development. Ergo, we require some internal software
formats without necessarily dictating a source language in
which it's expressed.

R. Taylor: Yes, that was the kind of feeling we brought out.
At the moment, we can't have one languaqe that is really
adequate for all the stages, but the types of things that
are done to the various representations are common. Exploit
that commonality.

R. Balzer: And even if the tool is not the same, the user's
view of that tool would be the same.

J. Machado: Yes, the user interface with the system should be
consistent. And that should be a requirement.

H. Steubing: I'd like to suggest that the design language be at
such a level that it could be reviewed by, and the final
design reviewed by people that are not primarily
programmers. [For example] the end user or certain types of
management levels.

(This line of inquiry produced a conflict as to whether a
unified language was possible or desirahle. The

114

participants agreed that the design work should furnish
automatic input to documentation efforts, but were unable
to reach consensus as to whether multiple languages were
necessary to implement multiple design levels and to
allow multiple user communities to interface to the
desigjn database.]

J. Esch: Aren't tools generally interfaced by a database?
If we want to write a program in DoDi, how dio we
reference the information that's in the database? Does
DoDl have that capability now?

C. McGowan: How desirable would it be to specify or have as
a requirement a database interface along the lines of
CODASYL?

R. Balzer: We have to talk about the usage here in that if
we assume, as I think we should, that the tools that are
goinq to exist in this environment are written in DoDi,
that's where this requirement arises for havino the
database interface. It's not because you're producing an
avionics program that you need this database interface,
not necessarily. FSut if you're going to b)e writing a
tool of the kind we've been talking about here, you do
need a database interface. The other thing that we
clearly need to have is some representation of programs
as a mutable object in the language if we're going to be
writing these kinds of tools.

[After some discussion relating to the necessity of a
reasonable environment as an adjunct to any programming
language, N. Ludhain expressed the view that he worried
because of the fact that the candidate DoDl languages
were developed without any thought regarding the design
environment. It was noted however, that at least some
thought is being given to these issues.

C. McGowan called for an assessment of the list of
requirements that had been developed. There was
disagreement as to the criteria that should be used, but
the following were listed as at least meriting
consideration:

The tracking of design decisions with support for
documentation

A "traceability" matrix

Design modelling andq simulation

Sub-consistency of design representations

Performance estimation (trail analysis / budget
monitoring)

Interface monitoring

Integration of tools (including standard formats)

115

Trhe ability to work with partial representationsi

116

Session 3B: Program Documentation
T. Standish, Chair

T. Standish: I want to begin this session by reminding you of
some of the setting. As you know from Col. Whitaker's talk
yesterday, during the life cycle of the software that is
likely to be programmed in the Common Languaqe, maintenance
will oftentimes extend over a period of 15-25 years. The
personnel who work on maintenance oftentimes have a large
turnover and last on the job an average of perhaps two
years. Maintainers naturally have to he able to undlerstand
the programs they are maintaining, so documentation plays an
important role in their ability to do their job well. Thus,
some questions we might try to answer in this session are
these: "Is there any technology that can be brought to bear
on the issue of documentation for programs? Are there any
disciplines of documentation that might make sense in this
setting? Is there any machinable form of documentation that
any one knows about that could help make the documentation
consistent with the program that is documented? I would
also like to focus on the sections of the Preliminary
Pebbleman Document pertaining to documentation. Do we
believe that they are the right requirements? If not, how
should they be rewritten? What suggestions can you give? A
third category of questions relates to our scientific
understanding of the nature of documentation. How, in fact,
do people use documentation to communicate about a program
and how does documentation help us to understand how a
program works? What is known scientifically about the
nature of this process? What should comments contain, and
so forth? I

rStandish goes on to read the sections oF the Preliminary
Pebbleman Document that pertain to documentation.
Section n.3 says the LSA will develop stanclards for
documentation. Section 9.4 says a master index will he
maintained for all documentation pertaining to the Common
Language and that formats for all levels of program
documentation will be defined.1

R. Ohlander: I'd like to make a remark. To begin with, first
of all there are documentation standards. The Air Force and
the Navy already have documentation standards. I'd like to
know whether a new standard will have to be developed for
the Common Language. If not and if the existing standards
are going to continue to exist, we have to address the
documentation in termis of those standards.

(Ruven Brooks gave a presentation on the nature of
program documentation from his perspective as a cognitive
scientist interested in the "psychology of computer
programming". Brooks explained some of his theories of
how people write documentation and about how they go
about understanding programs. According to Brooks, the
program text or the program listing is only a surface
manifestation of an underlying problem and its solution.
The major goal of documentation should be to capture the
whole problem solution. Involved in the solution are

, . - -

117

facts from a number of different knowledge domains an1l
transitions between the domains. Among these knowledge
domains are the orig inal problem domain,* model ing
domains, where we construct solutions, and the concrete
implementation domain of the programming languaqe in
which we express the solution. The original
documentation should tell people about relevant aspects
of the original domains and their properties, it should
spell out assumptions made in representing things in one
domain by things in another, and it should be explicit
about the translations of notions across the domains.
Evidence indicates that programming errors can occur in
any one of the knowledge domains, and to fix an error a
maintainer has to be able to transact in the relevant
domain and must apply reasoning in that domain to locate
the error. Brooks went on to point out that the only
kind of documentation mentioned in the Preliminary
Pebbleman Document is the "flow chart", and that while
"flow charts" tell about the sequence of operations there
is a mounting body of evidence that suggests flow charts
are of little help in documenting programs. Brooks cited
a study of his that compared the use of flow charts with
that of "variable dictionaries" given at the beginning of
programs that resulted in subjects being able to
understand programs eight percent faster using variable
dictionaries than using flow charts.1

R. Ohlander: What kind of information did you have in your
variable dictionary?J

R. Brooks: I should point out that we used very simple
programs. In the variable dictionary- for example, if you
had an array with a pointer that pointed to the last
element, the entries in the variable dictionary would be the
name of the array, say, A, together with a description of
the purpose of each row, and, if, say, the variable I is a
pointer to the last row of the array A, then I would be in
the dictionary together with a description that I points to
the last row of A.

R. Kling: Do you think comments should have a certain content
which you would constrain by the commenting constructs of
the language?

R. Brooks: Steve Fickas and I have been working on a model of
how people go about understanding programs. One thing we
notice is that they understand the program in several
passes. There may be a top-level structure pass followed by
various lower-level refinement passes depending on what the
programmer wants to do. If the program contains a lot of
comments, with top-level, intermediate level, and low-level
comments mixed together, very often finding information is
difficult. one suggestion we have is that comments he
assigned levels and that you have some kind of automated
system that will allow you to look only at the top-level
comments, and then to say you want to look at the
lower-level comments in a particular section.

G. Anderson: When you talk about levels of abstraction are you

talking about in-line comments versus a narrative at the
beginning of the procedure or subroutines with stars around
them which give an overview of the procedures?

R. Brooks: There is some work by Ben Schneiderman which
indicates that prologed comments are superior to in-line
comments for small size modules. Let me presume we have
small size modules of perhaps four or five pages in lenqth.
Perhaps each nodule has prologed comments at the b-eginning]
and interspersed comments throughout. Stich modules tend to
qroup themselves into functional subsystems. There ought to
be some higher level bigger prologue at the heginning of
each of these functional subsystems, and so on up the
hierarchy of subsystem levels. In addition, you may needl
some comments inside each subsystem grouping.

E. Nelson: I would like to reinforce your emphasis on
describing the objective of the program. A great many
errors in programs are caused because the user doasn't
understand the objective.

T. Standish: If one accepts your view of the difterent domains
and of the necessity of capturing the translations between
them, the prospect is for rather sizable documentation
sitting in the background of the program that you say is
only the surface manifestation of the problem solution. In
the practical environment, unless a documentation discipline
is established and enforced, documentation is often skimpy,
badly done, and doesn't keep pace with changes in the
program. If we accept your view, will you recommend a much
larger portion of the overall activity should be devoted to
documentation and less to actual coding? What management
disciplines would go along with the view that documentation
should be more complete in the senses you have outlined?

R. Brooks: I share Bob Balzer's perspective that rather than
creating documentation after the fact as an afterthought,
instead it should be created during the program development
process itself, and it should involve requirements documents
pertaining to the original problem domains and transitions
to the modeling domains.

R. Ohlander: I'd like to agree with that perspective. For
large systems, the program documentation is only a small
part of the documentation. You also have many requirements
and performance specifications along with it. There are
design specifications at both high and low levels.

A. Gargaro: Is the interpretation of what you have presented so
far that you are proposing a fundamental concept of the way
we design software in our program design languages? We
design by levels of abstraction. In order to do this, we
are going to have the ability to rigorously define the
objects and the sequence of operations. Is that the
interpretation of what yo-;. may have had in mind?

R. Brooks: By advocacy of this particular design methodology I
am only trying to say what I feel adequate documentation
consists of.

119

T. Standish: if I can get you to put on your hat as a cognitive
scientist for a moment, how would you rate the nature of our
understanding of the program understandling process?
Scientifically how far have we come? Is the published
literature any good, or are we just whistling in the dark in
a context in which not much of value is presently known?

R. Brooks: Not much has been clone!

T. Standish: What could you give as advice for the Pebbleman
about current technology that might be applicable?

R. Brooks: We do know that one thing that has been proposed in
the Preliminary Pebbleman Document is of little value. That
is that the "flow chart" is a waste of time.

Col. Whitaker: M~ay I make a comment on that? I know you don't
like flowcharting programs, nor do I. I have not been
flowcharting for fifteen years. On the other hand, people
that are developing large programs today actually do program
in flow charts. That is the way it's done. With your
experiments, you're talking about a module of ?00~ lines.
When you are dealing with somewhat larger programs, for
instance one for which the glossary of objects is 3(09 pages
long, there are differences. Do you have any thoughts on
the sequence of these things for such a large system?

R. Brooks: Let me deal with the flow chart issue first. While
there are many different kinds of flow charts, such as HRIPO
charts, about which nothing is known, we d~o know about
properties of what we might more precisely call the 'macro
flow chart" - one which abstracts, say, a hundred line
module onto one page. It doesn't show every single
operation, and it is known to be relatively helpful. one
wonders how big the flowchart at that level would be for a
system which has a 300 page glossary of items.

Col. Whitaker: 5,000 pages.

R. Brooks: The issue is whether a flowchart of that size is the
appropriate way to parcel ou.. the whole structure of the
system. As I mentioned earlier, I would suspect that a
great deal of the errors and misuse of data objects come
precisely from using a flowchart where all you see is the
flow of control describing what happens next, rather than
using good descriptions of the objects you are working on.
In dealing with your question of the 300 page glossary,

* presumably these can be organized into hierarchical
subsystems of objects.

*N. Finn: Can you parcel out objects as you weru doing for
flowcharts?

R. Brooks: If you can decompose your whole system into
functional subsystems, then for each functional subsystem
you ought to be able to have a much smaller collection of
data iter..s, and by the time you get down to the module, you
ought to have someth.ng reasonable in terms of the number of
such items you have.

120

G. Anderson; I'd like to support your contention about
flowcharts, speaking from a practical background. I have
fifteen maintenance programmers working for me and they all
work with listings two feet thick. Not one of them uses
flowcharts. While we have flowcharts, those flowcharts are
put on a shelf and rnot one of the fifteen looks at
flowcharts when they are digging in and trying to figure out
what the program is doing.

(P. Elzer gave a presentation of Massi-Schneiderman
diagrams and of extensions he proposes. The dliagrams
were applicable to real-time processes, parallel
processes, synchronization, exception handling, and so
on. Elzer made the point that simple flowchart
technology is alone insufficient for these kinds of
applications because of restrictedI contro. structures,
and that for descriptive adequacy in these applications,
flow chart components expressing more advanced control
concepts, such as parallel processing, were needed.
Elzer commented that his augmented Nassi-Schneiderman
diagrams provided such a descriptively adequate set of
diagram primitives for such advanced applications. Elzer
also commented that in his opinion, the use of these
diagrams helped programmers to rethink the program
structure in a way that clarifies the nature of the
problem and encourages devising solutions that really
work smoothly.]

J. Meehan: I think we should separate the questions that people
ask when they are looking at documentation. This is to
elaborate on something Brooks was saying earlier. If you
are looking at a piece of code and you want to know "How do
we get here?', then maybe flowcharts will help you. But if
the instruction you are looking at is "i = i + 1", none of
these things are going to tell you what is going on. Even
looking at a declaration that says "I is an integer" isn't
going to help you, or even if it says "I points to the
leftmost space in this array," that may not help you,
depending on what the level of your question is. Even if it
said, "This is the last free element of the array, and
that's being used to simulate a stack because we are walkingy
through a binary tree which is used to sort some numbers
which have just come up, etc.", it may not help. That is,
these data structures you are talking about are all
simulating something of interest at a higher level. So
there have got to be many layers of documentation. Wjow
documents can be very thick, but then the people who come to
this program to read the documentation come with different
purposes in mind. And it is probably the case that for each
style of reader, you have a different style of
documentation. If you have somebody who wants a quick
overview of what this program does, that is quite different
from somebody who has to repair a bug because this machine
just burned out or somebody who says he would like to update
it to conform to the standards. You can have many styles of
documents depending on the questions that you are asking.

T. Standish: Could I follow up on that and ask you --- do you
or does anyone else in this room know of any semi-automated

121

or even automated technology that could help organize this
great mass of documentation so a reader could "flip through
it", go across levels, or perhaps focus on certain things
with "windowing" and zooming", so to speak?

J. Machado: I think there is a possibility that a development
tool may be a a single data base management system or data
base which contains all the information about the system
development. Another perspective I'd like to put forth is
that a good deal of research in data base management systems
right now is looking at "views'. How do you present to a
user the same view of a data base management system even
though he may not be looking at the actual DBMS? For
example, the actual DBMS may be stored in index sequential
form, his view may be relational, and the system may do the
necessary transformation for that subset of the data base
that particular user is interested in.

E. Taft: I don't know very much about it, but within the
research community, the INTERLISP system has a fairly
extensive semi-automatic documentation system that is
closely tied in with the programming environment. There are
two things: HELPSYS and MASTERSCOPE. HELPSYS is an on-line
mechanism that allows you to get at the INTERLISP manual,
which weighs about five pounds, and to get at it in a way
that relates to the context you are in. So if you have just
typed CONS, for instance, and you're not sure what to do
next, you could ask a simple question which will be
interpreted in the context in which you are writing the
program. HELPSYS will reach into the manual and find out
the various pieces of information you want to know about
that particular construct of the language. Another air is
called MASTERSCOPE, which basically maintains a data base of
information about relationships among objects and other
things in your program dynamically as you develop and modify
it. It's got a fairly sophisticated English like front end
so you can ask questions such as "Who calls X in the context
Y?' and "flow many arguments does procedure X have?". You
might ask Teitelman for further details about these systems.

R. Kling: I have an observation and a question for Col.
Whitaker. Some of the analogies we draw are from very rich
programming environments such as LISP and INTERLISP. The
LISP environments, not the LISP language, really developed
in the last 15 years between the west coast A.I.
laboratories and BBN. Both of these efforts are very large.
They are built of large programs and they entail expensive
overhead. They're interesting and they're fun. They've
been custom tailored for computer scientists, not for
"routine programmers". There is a lot of learning that has
gone on in those environments about how to build tools for
that user community. One might assume that something
analagous might happen in the case of the DODI effort.
Instead of planning a fixed set of tools that are frozen in
the specification of the language, the language environment
is left sufficiently open ended so there can he
experimentation with different tools for different users.
Some of the DODI applications could run batch, and on-line
documents won't be much help. (And it's not clear what

122

would be helpful.) Over some period of time different kinds
of tools such as documentation aids might evolve. They
could be available as utilities or embedded in a later
definition of the language. Given the state of the
technology now, it's very hard to say what should be
delivered in March '79 as a set of software support tools.
I assume there is that kind of openness. That is my
observation. My question is: "Is there that kind of
openness in the DOD environment to evolving tools or is
there a sentiment that requirements will be frozen in
another two years so they won't have to be slowly developed
through dozens of DODl variant systems?

Col. Whitaker: There is a great deal of discussion needed.
Documentation tools are something we clearly need. I'd like
to differentiate between documentation, as in Section 9 of
the Preliminary Pebblernan Document, which had to do with
documentation of the language and the tools of the languaele,
and documentation of programs which is the payoff. Things
like INTERLISP and NLS were ARPA developments. my
organization built those. But I will have to admit that in
the real computing environment they are useless. They are
useless for anybody except the fellow who is out there
piddling with them. We have been absolutely unsuccessful in
trying to transition those to major systems developers.
They are not something we can brag about, in spite of the
fact that they cost us millions of dollars.

There are obviously some documentation aids. For
instance, there are autonatic flowcharters. if you like
flowcharts you can generate the flowcharts automatically
after the fact. Of course, that's not what flow charts are
used for. Flow charts are really only used in developing
programs arid after the fact generation is only paperwork.
There are fairly elaborate configuration control systems
which include documentation. That is, if you have versions,
it keeps track of the documentation of each version and the
code for that version, and then assembles the whole system
from bits and pieces. That librarian sort of thing has been
well used and it is very useful. There are a great deal of
internal standards in the various organizations about what
documentation to put into the code, identifying the objects
in each module and that sort of th.ng. It is very much
individual for each organization and it is very little. I
can make up, for instance, a tool which says now I'm going
to write a module, now fill out the following things
required. Those are useful as a discipline. I'm not sure
you call that automatic processing of any sort. There is a
move underway to make the documentation you do off to the
side in a more formal language format, such that you can
generate a program to check and verify that against the
program itself. I know of no operational system.

R. Kling: These are all sort of ad-hoc tools that evolve in
different environments. Will you provide the DODl
environment with many different tools that will be developed
on an ad-hoc basis in different places? And are you hoping
that maybe over a period of five or six years some core set
of technologies will evolve into widespread use?

r4
123

Col. Whitaker: That's probably a fair statement. The idea of
what would be available in the DODI environment is some
minimal set of such tools which are, as you say, developed
in one place on an ad-hoc basis and could be widely
available.

E. Taft: I'd like to make two remarks about Col. Whitaker's
earlier remarks. It doesn't seem surprising to me that a
lot of the internal documentation aids that have evolved as
results of efforts such as INTERLSIP or NLS have not made it
into the industry at large or into DOT for two reasons. One
is that sort of thing just does take a lot more time --- we
see that over and over. The other reason is that those
systems depend in their very existence on working inside of
integrated, interactive environments. As interactive,
integrated environments do develop in industry and in the
military, I think those tools will begin to see the light of
day.

Col. Whitaker: There are a lot of interactive environments and
there are a lot of batch environments too, so I'm not sure.
Like you say, its been 15 years. If you don't get in in 15
years, there is some reason to believe there may be more
than just the inertia of the system. Another thing disturbs
me along that line. NLS, as I say, was developed
specifically by ARPA. We have had a resident NLSer who
taught all the secretaries to do NLS and there was a time
when most of the secretaries were using NLS but none of the
project officers. Then we figured out that if none of the
project officers were using NLS, why whould we impose it on
the secretaries? We don't have that young lady teaching the
secretaries any more!

(A discussion ensued in which various contributors tried
to analyze the reasons for the lack of transfer and
apppeal of NLq. Then the discussion moved to the general
issue of technology transfer. Standish advanced the
opinion that while the initial prototype systems, such as
INTERLISP, may be too expensive to transfer directly into
applications environments, nonetheless, the principles
and lessons learned from INTERLISP might well transfer
indirectly by influencing the way interactive program
development systems are designed in the future. Whitaker
advanced the opinion that fifteen years is sufficient
time to allow a system to get transferred, if it is ever
going to get transferred and that he has seen
environments in full scale system operation that are very
much better than the INTERLISP environment. ,Thus, the

lack of transfer of such technologies as INTERLISP or NLS
may not be due so much to the difficulty of transfer as
to the fact that nobody wants that specific technology.
Taft pointed out that in the well-developed, integrated
programming environments at PARC or SRI, many programmers
spend a lot more time at their terminals writing
documentation than writing code while dealing with one
integrated system. Taft felt there didn't have to be a
distinction between a programmer's documentation
activities, his programming activities, and his design
activities, and that the more leverage a system gives the

124

less distinction there has to be between those
activities. R. Arnderson remarked that given a world of
limited resources, it might be better not to spend a
million dollars on fancy interactive environments when
buying 500 interactive terminals for guys who have to
wait for listings twice a day might enable them to get
their job done with only very simple tools such as text
editors. When simple aids are not yet down to the
working level there isn't much sense in talking about
developing fancy expensive aids for the few. W. Loper
noted that he has inherited large systems written by
large teams of other people and that he would hate to
have to use a simple text editor to search for the next
occurrence of a particular variable. He noted that
cross-reference tools were very helpful in this context.
Loper mentioned a system at Brown University that allowed
one to look at the structure of systems dynamically by
dynamically picking modules and zooming to get down into
their inner details. H. Stuebing suggested looking at
how hardware people document and maintain systems to see
if any lessons could be learned since they seem to be
much more successful than software people.]

R. Kling: In every session that I've been in so far, and in all
the documents I've read about DOT3I, there are extensive
assumptions made about the characteristics of the
programmers that use the language. Will they work in
on-line environments with rich computer resources? or will
they work in batch environments with lean resources? Are
they going to be people with college degrees in computer
science who are highly motivated to keep up with the current
technology? or are they going to be private first classes
with high school degrees and six weeks of programming
training waiting to get out of the service? Those
assumptions about context have never been clearly spelled
out anywhere, but they were critical in defining appropriate
technologies. We're trying to match a tool to some kind of
unspecified social environmert. We need a special session
to get a clearer understanding of the setting in which DODl
programming will take place. What kind of personal
differences and organizational constraints are likely for
which DOWl should be designed? I think that should receive
explicit attention because there is a great deal of implicit
controversy about it and presumably by making that
understanding explicit, it would be easier to get a coherent
idea of what environment would best serve T)ODl. I would
like to run that session this afternoon as an open forum
Session ""

125
Session 4B: Program Development Systems

Thomas E. Cheatham. Chair

[Cheathaina s opening remarks are summarized in the
position paper entitled "Program Development Systems - An
overview". Discussion begins immediately following his
remarks.]

S. DiNitto: I subscribe fully to your proposals, but I want to
ask how seriously we can expect that that view will be
adopted out in tne real world? How successful is NSW going
to be? There may be reasons for NSW's failure independent
of the issues here...

T. Cheatham: Look, lte me try another assumption. The
assumption that iri this real world, that is the real world
two years from now, at least 15% of the programmers starting
new projects will have access to a sensible system. If 15%
have an easier and better life and are much more productive,
say by a factor of 2, that'll make a difference.

R. Balzer: You've got to start small in the sense you have to
prove the things we're proposing are going to really make a
difference. If, in fact, you can show in the real world
that even with the small user population these kinds of
facilities pay off, then good management is going to spread
it throughout the military.

S. Crocker: There's probably something to what you say, but I
feel like the experiences have been around for a long time.
The systems that you and I use, the systems that Warren
showed didn't grow up over night. they go back through a
couple of generations of computers and a long history.
narrow in terms of how much the community is affected, but
long. I think it's worthwhile expanding the discussion a
little bit to ask what is it that is necessary to move that
technology out. Maybe it's only that there needs to be some
controlled tests, that there's some documentation.

T. Cheatham: Would any of the real world people like to make
some comments?

P. Eastwood: Yes, I think it's safe to say that McDonnell
Douglas has access to terminals and large computers. My
concern is that we're not part of the ARPANET. If, for
example, you develop an editor as part of the higher-order
language project the problem is getting us to use your
editor rather than our own.

S. Crocker: That's fair enough and moderately sensible, because
we all know that the cost center associated with the
computer in our own company has to be supported. There are
often more serious issues. That technology will dribble in.
The more interesting and tougher environnerts are the
military centers.

T. Cheatham: Any comment from the military centers?

126

G. Anderson: We do program maintenance work, we do not patch
binary card decks. We have a timesharing system and work in
a higher-order language. We have an interactive editor. We
do not have the capability to interactively compile and run
interactively, we have to do that batch. I'm from the
Marine Corps Tactical Systems Support Activity. We provide
the software maintenance for the embedded systems for the
Marine Corps.

T. Cheatham: It seems like you'd be a good example for the kind
of place where one could put this new kind of technology.
You've gone to the point where that would seem to be the
logical next step. Are there some who are so far backwards,
who will admit it, and we can talk about that.

A. Gargaro: I would probably like to substantiate what the last
speaker said. I'm currently assigned to the ... Navy
program and we in fact do use a program development system
to build tactical software. To some extent we have some of
the capabilities that were shown in the video tape
presentation this morning. A lot of the frills and
sophistication we don't have. Basically we do support many
of the types of facilities that presentation showed. There
was a question this morning about how such a system would be
accepted in the military. I can only comment upon the
environment that I'm familiar with, and there does seem to
be a tendency on the part of program managers that they like
to see high paid programmers at their desk with a coding pad
rather than at a terminal. There seems to be a reluctance
to accept the fact that you can work effectively at a
terminal.

T. Cheatham: So it's time for a management retread?

A. Gargaro: Well, that's a possibility, but I suppose we would
have to conduct some studies to see if we're justified, if a
programmer working interactively is really more productive.

T. Cheatham: roodness, that's a cycle everyone went through ten
years ago. There was study after study of the effect of
interactive computing on programmer productivity. T don't
think there's any argument in the world about the distinct
increase in productivity with the use of these tools.

W. Teitelman: I think Dijkstra just took a strong approach on
that last year. His approach to writing a program is that
you get a piece of paper and you think. [Disagreements]
Certainly I'd be the last person in the world to defend
that position, but I'm saying there are counterarguments.
His answer to why people don't do better that way is because
they haven't been trained correctly. It may be a question
of education.

T. Standish: There's a very difficult problem in getting
experimental evidence to prove your contention. Sackman,
Ericson and Grant did studies a while back trying to measure
the difference between the batch and the interactive
environments. They did find a 33% shift in the mean in
improvement in the interactive direction, but the

127

experimental designs have always been criticized as not
having exactly equal training or features for the
programmers and it sets them in a context of factors of 20~
differences in the prog~rammer's indivirlual performances,
i.e.there's enormous variance in the statistics. It's very
hard to nail down and prove that, even though we commonly
accept and believe it.

E&. Nelson: I tend to view what you're descrihing here as
various increases in automation of the process, picking out
certain parts which can be automated and made to support and
called a tool. The extent to which people use such tools
will depend on a variety of things, their cost
effectiveness, their convenience. In using a system like
this, that's a difficult thing to estimate and yet it's very
important because there's a certain threshold of convenience
above which the average person will work That is, if
it isn't at least this convenient, he won't use it.

If you look at it in an evolutionary way you can introduce
selectively various tools and various environments. As
people begin to see, hey, when you're using that tool
suddenly you can do things faster and cheaper and you make
fewer mistakes because it's automated and it doesn't make
the mistakes that you make on the pad and paper, they'll
begin to accept it. I think it's the kind of a system that
has to evolve rather than suddenly having a gigantic
development.

T. Cheatham: I would certainly share that point of view and I
think one of the questions we ought to try to have a
position on is what do we constitute to be a minimal set of
tools, maybe the empty set! ... I think one thing, this is
not going to happen over night. That seems very clear. I
do hear a consensus that although we might not be able to
measure the improvement effected by the use of a reasonable
system and tools, everyone feels that that is a good way to
go.

J. Bladen: The argument was made earlier that these tools, if
they were made available, would possibly not be used by the
services because the programmers would not be qualified to
use them and would find them cumbersome. If the tools are
available, at least in my shop, we can say these tools will
be used to the maximum extent...

T. Cheatham: If they're of value and they decrease the cost of
programming, then it will show up in the market place no
matter how dumb the contractors are.

S. DiNitto: Possibly a counter argument here. In the flept. of
* Defense we've been burned a few times in the past by having

a system developed using some useful tools and then not
havinq those tools delivered as part of the final product.
So we qot a little smact on that and asked for a development
system. A worry that a lot of people have is that it seems
for each new system, we come across a new Oevelopment or
maintenance system. We've been plaqued for years with what
we call a proliferatio~n of programming languages. We're

128

coining to the state now where it may be proliferation of
support environments for the system.

T. Cheatham: It seems to me that what we're talking about here
is an environment, and I hope that one of the bottom lines
of today's session would be some suggestions,
specifications, requirements, hopes to lay on this whole
DODi effort. ... Are we to the point where we can
standardize on a program verifier? Obviously, no. What is
the realm of things that could be standardized on at this
paint in time?

N. Finn: Related3 to the question of proliferated environments,
we're talking about a time scale of 10, 15, even 20 years.
Are we putting a restriction here on the idea of diving into
the original context of the design in order to make a
change? Does that mean that we have to keep the database,
the tools that were used in the original desirgn process?
Does that mean they have to be around for ten or fifteen
years so that we can get into this design then?

R. Balzer: I believe very strongly that the tools that are used
during maintenance should be the same ones that are used
during development, but that really is tomorrow' s session.
It seems to me that the challenge that we face here at this
meeting and in the development of further documents on the
environment for DODl is to find an architecture which we can
specify today or in the next short period of time which will
support the evolution of tools of the kind that we've just
been talking about. We can start with the existing tools
that represent the state of the art today and we can upgrade
over time to stronger and stronger tools, but yet slip them
in an incremental way as they become available. We'll
strengthen the environment; more will be known about
programs; we'll be able to do better analysis of the
things; we'll be able to keep better records of what's
going on.

It has to be an evolutionary type process. We cannot hold
as standards that which is operational today. That would be
foolhardy. ... Our challenge, I think, is building or
designing an architecture that's going to be strong enouqh
to support this evolution over time and-yet still have the
characteristic that systems which are developed early in
this framework can he maintained 10~ or IR years later. Now,
the tools that they were developed with may have long
disappeared, but whatever replaces them has to deal with the
kinis of records that were left which I think are very
important for the maintenance process. Just getting the
source program is no longer going to be acceptable for
maintenance operations, even with documentation.

R. Morris: I don't think we have been distinguishing adequately
between what kind of tools that are available here and now,
thoroughly tested and in wide use; those notions which are
blue-sky, under development, good prospects but not yet
here; and thirdly those that have been kicked around for a
good many years ... It would be somewhat misleading to give
the impression that we're talking about a relatively uniform

129

range of products. We have to, by the end of this session,
acknowledge that.

T. Cheatham: I think we've talked for awhile now ahout the
assumptions. Let me try to shift the ground a little bit
and get a discussion going on some of the requirements we
may want to imagine being put on an environment for DODI.
... The question I'd like to address is the question of
program representation,. .. Text is just not a
representation that makes sense for any kind of processing
except putting on files and taking off. Would one want to
propose a standard representation, internal machine
representation for DODI programs, modules? Would one want
to insist that in the DOD language there are built in those
datatypes and selectors and so forth that let one deal with
this internal representation? After all, the program tools
are going to have to. Should that be a standard, is that a
reasonable thing to propose? Let me take the strong
position of yes, absolutely.

S. Crocker: If the tools have to be written in DODI then I
think one is definitely forced into that position. I'm not
wholely convinced of the wisdom of burdening DODl with the
requirement that it be a reasonable language for embedded
computer system and that it be able to do program
manipulations. I think that those are not closely related
to the Ironman requirements. Without debating that point,
if you insist we be able to write program development tools
in DOD then I think it's absolutely essential that
datatypes and mechanisms be available inside the language
for handling instances of the language. In the words of
somebody, programs have to become first class citizens. I
think that perverts the language a lot, but I think that's
required.

R. Balzer: It seems to me that there are two issues there that
you raised. The first one is that just because programs are
data does not mean that you necessarily can execute them.
And if you don't execute them, if they're just an object you
manipulate, I don't see how it perverts the language at all.
It's just like passing around any other datatype, and with
that in mind I don't see how there are any extra
requirements on the language to treat programs as a
datatype. If you can't represent programs as a datatype in
DODI you probably can't represent any of the other complex
structures that were part of the design of the abstract
mechanism of DOD1. All that Tom is saying is that we should
be able to choose a standard for how DODI programs deal with
the in'ternal re:presentation of programs. It's really a
standards issue more than it is a push in the language.

W. Teitelman" I just wanted to stress the fact that I feel very
strongly that programs have to be able to manipulate other
programs, whether this means that the source language is in
some manipulatable form or you have access to some internal
representation. ,..

(Crocker,eitelman and Balzer continue to discuss the
issue of programs as data structures and the desirability

130

of being able to directly execute such structures. Their
discussion is concluded with the following remarks.]

S. Crocker: You put yourself in quite a bind to say that tools
for manipulating programs are going to be written in DOD1.

R. Balzer: But the alternative is so horrible, Steve. The
alternative is that they're written in something else, and
then how do you do your transportability? How do you try to
maintain some sort of common environment on different
systems?

S. Crocker: I understand that it's just not an easy problem,
but I think we ought to have a very clear perception of the
size of the problem we're talking about.

(Cheatham suggests that Crocker 1 al, continue their
discussion in a separate technical session. The topic of
discussion then shifts to Michener's remarks.1

J. Michener: The foregoing discussion has been based on an
assumption that all the programs in the program database are
in the same language. This assumption has not been made
explicit, and cannot be fully justified. Some of the tools
under discussion will help projects which need to use other
computer languages in conjunction with DODl.

A graphics project might use programs in a graphics language
to describe how information is to be displayed and programs
in DODI to control those displays by supplying specific data
values as parameters to the graphics program. (This
approach has been adopted for the Advanced Integrated
Display System, under development for NADC by Intermetrics
and GE.) In such a project, the graphics display unit, being
in essence a special-purpose computer, lacks the capability
to execute programs written in DODl. In addition to
graphics projects, there will be projects using other kinds
of special-purpose computers, like array processors, which
will benefit from a similar approach. Of course, there will
also be projects with a need for programs written in
assembly language.

There should be no reason why projects which need to
use languages other than DODI cannot benefit from some of
the tools we are discussing, like those for history tracing,
version contol, and text editing.

T. Cheatham: It would be mandatory. I don't know what has been
said that leads people to believe that we're jast talking
about flODl programs.

A. Evans: It seems to me, Tom, the answer to your question
[regarding standard representaion] should be yes. The
reason is that each rf these tools is going to have to go
through the same validation procedures the compiler does.
If someone writes an interpreter for DODI, it absolutely
must interpret exactly DODI and no more and no less, or it's
useless. This means the Language Control Board must have
the same control over the interpreter and over the verifier

131

and over essentially every one of those tools that you
mentioned, since otherwise there's chaos. The verifier has
got to know the same language the compiler does or you're
nowhere. The only conclusion I can reach is that they all
must be maintained by the same agency and they're all going
to have to be standardized.

R. Glass: I understand the subject of standards, I understand
what internal languages are, hut I don't undlerstand the
relevance of at what level the internal lanquage should he
stand ardi zed.

R. Balzer: I think the issue is to take a somewhat larger look
at this thing. We're talking about trying to create an
integrated environment of tools. To get tools to interact
there has to be some standard of communication between them.
What we've identified here is one instance, and only one
instance, of data which can be shared among several
different tools. What Tom pointed out is that a lot of the
standard tools we think about - analysis tools, verifiers,
compilers - all at some stage or another have to deal with
the parsed version of the program. There are mnany different
forms that could be proposed for this standard. It would be
very nice if that translation could be done once from the
text form into this internal form and thereafter all the
tools work on this same internal form of programs. For
instance, if the dynamic analyzers work not by augmenting
the source text but work by augmenting this internal form
and then let compilation proceed to collect the run time
data, now you have a more integrated form of operation.
What we're trying to talk about is that one of the
requirements in this program development system is that
certain tools will he required to deposit some of their
information in a way that's accessible and Useable by other
tools.

R. Glass: There are a lot of levels of internal representation
that different tools are going to need. I think you've
opened up a bad can of worms.

S. Crocker: I'd like to kind of agree with both sides of this.
I have a fair amount of experience in a couple of projects
of trying to share parts of a compiler across the country
over the network. It seems clear that first of all it's a
very good idea and second of all that there's no way to
pursue the standards issue in detail until you've built the
language and the pieces of the compiler and until you look
at the parts that come out and until you get some experience
with that. It seems to me that if one is going to pursue
that course one has got to get a first cut picture of what
set of tool~s are a minimal, sort of good working set, get
some ideas about what the interactions are so we know what
levels we have to tap into. What we've found is that the
first cut at what those levels are wasn't exactly right,
although it was certainly in the right direction. We've got
parse trees out, for example, but we didn't get the symbol
table that came with it. We'll build a symbol table from
the parse tree, it's all in there, but we would .lefinitely
have liked to have a symbol table too. That kind of

132

experience can't be gained directly.

I don't think the technology is quite here to say "here is
the definition of the language and therefore we know
immediately what the intermediate levels are". It can be
gained by a small amount of additional work about patterning
what the set of tools are, doing the first cut design of
those tools, and then seeing what the interactions are, and
then making some decision about it. I think it's quite
reasonable for this group here to recommend a course like
that, and unreasonable to recommend anything stronger than
that at this point because I don't think there's enough data
on the table.

T. Cheatham: Let's leave aside the problem of internal
representation for a moment. Let's see if we can talk about
what would be the minimum inventory of tools that would make
sense for the initial delivery of DODI.

[A reasonably disorganized discussion ensue, during which
miscellaneous individuals suggest their favorite tools to
be included in the inventory.]

P. Eastwood: I am interested in what we can do to test out
timing before we get to the machine. Right now we do a lot
of debugging on the target machine by building black box
hardware. I'd much prefer to have a software simulator to
work with my high level language and simulate inputs,
interrupts, etc.

S. Crocker: We operate such a system.

P. Eastwood: What is it called?

S. Crocker: The Prim system. It's a microprogrammable box
attached to a timesharing system. We emulate various
computers including all of their time sharing system.

P. Eastwood: And if this were working with DODI?

S. Crocker: The current mode is that one writes microprograms
that emulate the hardware instructions set for whatever
computers you're concerned with. For DODl, you'd compile
code down to the instruction set of the machine that you're
concerned with.

P. Eastwood: So you must generate low level code?

S. Crocker: You run that under simulated time with input
appearing whenever you want. We have complete break point
stop capability, so you can debug and repeat any execution
sequence.

A. Evans: We at BBN have had a lot of success with cross-net
debugging for small computers. We have defined a simple
ARPANET protocol that permits a programmer connected to a
large machine (such as TENEX) to interact with a program
running in a small one using a DDT-like interface. All
symbol tables and source code are maintained on the large

133

machine. The special code needed in the small machine to
support this mode of operation is minimal. .. The concept
would be similar to what Steve was talking about, but
implemented differently.

S. Crocker: We can emulate a military computer and we have the
kind of scaffolding that sits outside of the emulation that
the program normally sees.

(Cheatham suggests that the current discussion he limited
to general tools and that emulators for specific hardware
are not such. Disorganized discussion then resumes.1

T. Cheatham: We've had fun playing a game that really can't be
played out here. Now certain people want to give their
pitches in this session about some existing tools and
facilities. Then I think we ought to go back and see if we
can in some sensible way indicate our requirements.

[S. Crocker now begins a brief presentation.)

S. Crocker: This is about a project called AUTOPSY--System for
translation of old programs; you can find out how the
letters fit into the name. The issue is what to do with the
existing programs in the old languages, such as CMS2, TACPOL
and JOVIAL. This presentation was originally scheduled as
part of the session on tools for migration of old programs.
Clearly what you would Like to have is some function which
would gobble up an old program and generate a new one in
DODl. That's a rather nasty function and we're trying to
look at that problem. Our approach is based on some of the
points that were made earlier this morning. You have some
concrete representation of the old program that you parse,
and you get it into some intermediate language form. We
plan to translate this intermediate form in some
environment. When you successfully translate any program
into a form which can be output as DODl, then you depArse
it, prettyprint it and get the new program.

So as to have a reasonable goal, we decided to look at rMPw ?
as a source. The translation mechanisms will not be totally
automatic. There will be ways for the user to apply several
kinds of transformations. Also, we feel an important part
of the system is to have an audit trail for documentation
and undoing. Because CMS2 is not a 3articularly powerful
language with respect to DOM1 and doesn't have parallel
processing, we expect to be able to translate most parts
automatically. Parts that will not translate automatically
will be left as is. We'll provide other means such as the
Interlisp editor to edit inline code. Later on we may have
general source to source transformation ala in the ILvine
catalog. In some cases of substituting code, it may be
possible to verify equivalence with the code being replaced.
With the automatic -translation we would choose some
intermediate language carefully an~d hope that it would have
much in common with the new language in DODl, we would
translate as much as we can and go around the hard parts.

There's a research topic in all of this -how to generate

134

such a system automatically. We have to start with some
formal definition of the languages, and construct an
intermediate language. We'd have to take that formal
definition and look for mappings between the various
constructs on the basis of what their semantics are. It's a
difficult problem.

Michener: I'd like to speak about program development systems
for projects using multiple languages. There is planned a
program development system which will keep track of programs
written partially in a graphics language and partially in
SPL/I which is a standard NAVY language for embedded
systems. This system will include mechanisms for
associating object code of comparable versions of programs
in the two languages. At execution time, there are
conceptually two programs: one program, written in SPL/I,
executes on a general-purpose computer; the other program,
written in the graphics language, executes on the graphics
display unit. The goal is to have the general-purpose
computer alter the program in the graphics display unit 6.0
times per second, to achieve visual dynamics. For
efficiency, the SPL/I program (in the general-purpose
computer) requires low-level details of the structure of the

graphics program. To maintain a high-level programmer
interface, these details will enter the SPL/I program as
SPL/I source statements generated by the graphics compiler.
For this reason, a facility for handling multilanguage
source programs in an integrated fashion is essential.

[H. Stuebing now gives a slide presentation of the PASP
system. A detailed description of the system is given in
his position paper.]

T. Cheatham: I suggest that we should turn our attention to
recommendations of this group as to regards to ... the issue i
of should the tools be written in DODl or should they not?
1) They should, 2) they should not, 3) who cares.

A. Evans: I think they should. There are already requirements
that the compiler be written in DODl. And that requirement
was stated before you broke the compiler into several
pieces. That means each of those pieces will have to be '
written in DOMl and if the language is good enough to do
that I can't think of any other tool that won't be equally
as good.

E. Nelsen: I wornder if some of the opposition to tools being
written in DOMi is the requirement that 100% of the tools be
written in it. There is the fear that some one tool might
be awkward or terrible then. If the requirement were riot
stated in such absolute terms it would be more Acceptable.

T. Cheatham: Let's hear the opposition. Who wAnts to not write
the tools in DODl?

H. Stuebing: First of all, DOMl won't be ready when I want to
write the tools. Second, DOMl is not going to have a data
base management system with it and how am I going to write a
support environment in that language? Do you want me to do

it in 1990 or now? 13

T. Cheatham: Assuming we have a DODi compiler, do we want to
write the tools in it?

E. Nelson: Then we're talking about tools built after we have
the compiler?

T. Cheatham: Who says we should not use DODI?

H. Stuebing: I've already written my tools at that point and I
don't want to rewrite them.

T. Cheatham: That's a different matter entirely.

H. Stuebing: That's not going to happen until 1980, or
something.

T. Cheatham: What I want to hear is those who think we should
not write the tools in the extant DOD1.

(Scattered remarks and mumblings.]

T. Cheatham: I guess we're hearing unanimity except for
Loveman.

[More mumblings.)

T. Cheatham! Agreement: DODI "shall" write new tools for DODI.
That's assuming it can handle the program as stated. That's
the next question.

[Discussion resumes now with the tabled issue of a
standardized internal representation.]

R. Balzer: You could write a compiler in DODI which used things
like arrays to store the internal representation of data.
You could do it in FORTRAN. That's not what we're talking
about. We're talking about promoting programs to a real
data type in the language.

A. Evans: It's not necessary that an object program he a class
one citizen, as someone remarked. What must be a class-one
citizen is a representation of a program, and that is
neither more nor less than a collection of bits. It's only
when you direct the hardware to interpret it as a program
(i.e , to pick it up on the instruction cycle) that it must
become a program, and that requires only a transfer function
that can be outside the language. You can manipulate the
representation all you want.

E. Nelson: Probably the same point of view here. I think the
opposition arises from the implication that any tool has to
use the standard, as distinguished from a requirement that
there shall be a standard internal representation as a
mechanism for communicating between tools.

T. Cheatham: That's a very good point. Clearly, an optimizing
compiler is going to have eata coming out the gazzoo about a

136

program. Let's try to refine the idea. I'm proposing a
standard representation in the sense of the way it's talked
about, not the way bits are configured on some computer;
that's irrelevant. A standard way of notating in n1OT'l,
let's say the result of parsing.

T. Standish: I'm against the premature standardization of the
internal representation in the initial environment
requirements. I believe that what we could better do in the
initial requirements is to specify the behaviors we would
like in the tools and let the representation be chosen by
the implementors of the tools to satisfy those external
behaviors. For instance, we should write requirements in

'the form there 'shall be break points", "there shall be
Itracing", "you shall be able to talk to the executive at a
break point" or whatever. By specifying the behavior
requirements without detailing the representation necessary
to satisfy them, we do not overconstrain the possible
solutions that may be devised to satisfy the requirements.
Perhaps later, when the feasible designs are better
understood, we can choose a good standard internal
representation, but we do not know enough now to choose a
standard one initially.

R. Balzer: V' like to expand on Tim's comments because I think
they're in the right direction. What we need to do is to
identify what kinds of information flow we expect between
these tools and for each such information flow there has to
be agreement between all of the parties using that
information about how they're going to represent thi ngs.
What I think we really are saying is that in order for therek
to be interaction between tools, which is one of the goals
we set out here, there have to be standards. They may be
local in the sense that it's an agreement amiong the parties
that agree to use this data and there may be many such
things because there are many kinds of data. And the parse
tree, while being a very useful thing for a wide variety of
tools, is only one kind of information that these tools will
want to exchange.

N. Finn: The old idea of a compiler is being dispersed over a
great many tools now, with a number of code generators,
optimizers, editors, deparsers and so on. When the first
set of these tools is written, they will have to share a
common intermediate representation that will have to be
standardized in same form just so you can build on that and
not have the intermediate representation shifting under your
tools. it will happen but there doesn't have to be just
one.

T. Cheatham: What you're saying is there may be an inactive
standard. ... Does that suggest that we say nothing abo'zt
the subject in our list of things? We understand that
people know enough to build compilers in two pieces?

T. Standish: I believe that we should make a very strong
statement that people can react to, so at least the issues
will get further discussed, If we state somethinq that's
weak and diffused it will probably never be noticed.

137

Whatever strong thing we say should, in fact, be very
restrictive and minimal but have a lot of punch. For
instance, all these tools that we speak of should relate to
each other and call each other and we should have a decent
set of minimal tools. We should make a strong statement of
that sort in the requirements so at least if someone else
doesn't believe it, they can attack it and thus we will
stimulate future discussion.

T.Cheatham: I certainly agree with that statement and I stand
with pen in hand to take it down in length as a proposal.

(A loose exchange now ensues between Cheatham, Standish
and Balzer wherein they discuss the issues of the
intercommunication of tools, the program data base, and
other minor topics (not includini the weather) . This
discussion is well summarized in the position paper by
Cheatham, et al.

Following a question about the existence of a program
library, D). ELuckham and T. Standish begin a brief
discussion about the contents of such a library. That
discussion concludes as follows.]

D. Luckham: We should be rather specific about the kinds of
things that should be in the library. It's my suspicion
that there's going to be quite a few years of shake down
while people find out how to run things in this language,
how to write the modules for an operating system correctly,
how to do distributed data base programming. We may as well
start with a list of craftsmanship exercises that will go
into the PDB (program data base]. I see some of these fancy
tools here that people think are very simple for standard
languages as not being at all simple for DODl.

T. Standish: There may be a point of confusion here. You may
want a library of things that have been written in DOMl
available to all users of DODi.

D. Luckham: Not only that, I would like to say that people
should start working on producing such a library.

T. Standish: Right, and you may want a user to hav~e to search
that before he writes his own program...

D. Luckham: One of the things I see needing to be done first is
to build up the library.

T. Standish: But PEBBLEMAN, I believe, has a requirement that
users mist consult the program library to see if a module of
an exact or similar nature has already been written before
they're authorized to write a new one.

D~. Luckham: That's beautiful. I'm suggesting there be
something in the library for them to consult. I'm
suggesting that we spend two years with teams of experts
programming old systems that have never been written in this
language.

138

T. Cheatham: What I think David's proposing is that we need
these things, versions of these things, preliminary versions
of these things on day 1. They should he started very soon.
Is that what you're saying?

T). Luckham: Yes. I'm saying that we better start learning how
to control the techniques in this new language.

[Following a few more scattered remarks, Cheatham moves
to close the discussion.]

T.Cheatham: What I have on the table, as I understand it now,
is a proposed "shall". It's a mumble that we must convert
into prose shalls. Let me try a proposition: this body
feels that there shall be a program development system with
three components, and an inventory of tools. We should have
this sufficiently early so we don't have a bunch of people
tearing off with old fashioned compilers, but rather people
thinking in terms of this new kind of facility.

T. Standish: I'd like to second Cheatham's proposition and then
amend it immediately. Have Cheatham appoint a commission of
those present, to be picked by Cheatham, to go and write a
draft of this over night and ... to have a firmed up
version of this by tomorrow morning.

[This proposal was implemented, and Cheatham, et. al.
wrote the position paper "Program Development Systems-
An Overview" that evening. This paper is found later in
this Proceedings.]

139

Session 5B: Program Maintenance

Chair: Bob Balzer

Summary: Jim Meehan

Maintenance system =.development system

Balzer began by presenting the view that program

maintenance should be an extension of program development,

and that the same tools should be available for both. He

offered a replacement for section 7.1 of the Pebbleman

document:

DOD-l will exist within a program development
system (PDS) which aids the creation, development,
docum~entation, and maintenance of DOD-l programs.
This PDS will be composed of an integrated set of
tools which aid these activities, a data base of
information about the programs being developed, and
an executive which coordinates these tools and the
user's interface to them. The information contained
in the data base represents shared information, that
is, information produced by some tool and used by
one or more of the others. As an example, the
parsed version of program produced by the parser is
used by code generators, static and dynamic
analyzers, and a program editor. This shared
information provides the basis for coordination
among the tools. As another example, the program at
many levels of development is used by the project
management and maintenance tools. The design
philosophy of the PDS is to avoid the unnecessary
re-creation of such shared data by decomposing the
large macro tools existing today into smaller
component parts which transform one set of sharable
information into another.

He went on to describe how the PDS should also n~rovide a

symbolic backtrace, in a standard format.

140

The probhlems of maintenance

Balzer noted that estimates for the cost of

maintenance range from 50% to 91% of the total cost of

software. He cited a paper by Lamon and Relotti of IBM,

"System Growth Dynamics," which pointed out a conflict

between maintenance and program structure: maintenance

destroys program structure, and badly structured programs

are expensive to maintain. The technology of maintenance

requires (1) ample documentation of the system and the

history of its development, and (2) programs that produce

cross-reference listings and specify the data

dependencies in the system.

Maintenance also conflicts with optimization, since

optimization requires sharing information in many parts

of the system, thus increasing the connections between

subparts.

A third conflict is that managers view maintenance

as trivial, since their view is from the logical level,

whereas the actual implementation of changes is far from

trivial. But perhaps the oest place to make a change is

at the high level of design; the system would then be

re-implemented. Of course, that could be a vecy

expensive operation, and we should like to benefit as

much as possible from the previous implementatiors. But

that requires that all the implementation decisions, be

recorded.

141

Top-down design can aid maintenance

Tom Cheatham indicated that maintenance could be

simplified with a good top-down design and the abililty

to regenerate a system easily. He reviewed the structure

of his automatic programming system (explained in a

previous session). The descriptions of a program vary

across hierarchical levels, but the implementation

details do not cross many levels, thus insulating levels

from each other. This enhances flexibility, so that if

the implementation of a particular data structure

changes, for example, the chanqes need he marie at that

level and below, but not above. The user must specify

how the abstract details at one level are rewritten into

more concrete details at the next lower level.

Simple maintenance may require only small changes at

one level, and the rest of the system can be regenerated

automatically from the same set of rules. More difficult

maintenance problems occur when the rewriting rules

themselves require modification. Then Cheatham uses a

program to say where the rules in question are used, so

that he knows where to make changes. He cited an example

of an algebraic simplifier where he re-designed the

normal form for multiplication, changed 25 programs, and

ran verification tests, all in a sinqle day. The ease of

maintaining and modifying this system followed from the

fact that' much of the work (re-designing, changing, etc.)

142

was done at high levels, and that the parsed version of

the program is available as data to all the system tools.

Synthesis precludes maintenance

Colonel Whitaker then descrihed a program

synthesizer for certain problems in physics. After the

user specified certain input parameters, the synthesizer

would create a new FORTRAN program to solve that

particular problem, using high-level descriptions of

related programs within its library. It also performed

all the library-management tasks. Whitaker also

mentioned that it had been extended to other problem

domains, and that it was far too large to be practical in

an embedded system.

What knowledge -is needed to maintain software?

The next phase of the discussion centered around the

issue of what the maintainer needed to know. Norm Finn

argued that it is very difficult to transfer the "web of

information" from the designer's head to the maintainer's

head via some database of development history. Balzer

and Cheatham agreed but said that there was a strong

advantage to using notation and concepts from the

high-level description, as opposed to the implementation

description. Patricia Santoni added that we couldn't do

143

any worse than we do now, where the typical. design

document is written for managers, not maintainers, and is

therefore misdirected as well as, in some cases,

inaccurate.

Dave Fisher raised the issue that in Cheatham's

multi-level system, there was the danger that the levels

might be incompatible, and that programmers might change

the lower levels without changing the higher-level source

code. Balzer pointed out that these were both

verification issues and might he solved with such tools.

Should maintainers be licensed?

Peter Elzer then asked why we should trust

maintenance systems at all, noting that maintainers are

generally less skilled than designers, as is the case,

for example, with cars. Moreover, the designers and

mechanics do not use the same documentation at all. As

another -example, those who maintain computer hardware g~o

through a great deal of training before they're allowed

to work, Why should it be different for software? Sam

DiNitto replied that computer systems were often

one-of-a-kind, unlike cars, and therefore economics

prevented that solution. Tim Standish commented that

Germany requires auto mechanics to he licensed, and the

U.S. requires pilots to he licensed. He sucggested that

programming licenses be required for systems programmers

144

working on Defense embedded system contracts. Captain

G. Anderson pointed out that there was a high turnover

among programmers, and very few skilled programmers kept

a position for two or three years. (Peter principle?)

Biq machines or small machines?

The next part of the discussion concerned the

relation between the large, comfortable systems with lots

of software support, and the small systems for which the

code is actually being written. How much of the support

software should be on the small machines?

Steve Crocker started the discussion by noting that

field maintenance must be as controlled as the original

development, and that tactical support out to the field

must become part of program development. Colonel

Whitaker also stressed the importance of on-site

maintenance, as opposed to using some central facility,

such as a simulator running on a very large machine,

connected by phone lines. But that view, Ralzer pointed

out, may conflict with the idea that the maintainer must

have the "information web" available; instead, perhaps,

the software tools could provide only the dependency

information, allowing him to home in on the problem.

145

As the discussion changed focus from 1ong-rAngje

solutions to short-range solutions (extensions of current

tools) , Steve Crocker pointed out the advantage of

developing DOD-l on a large host machine with an ample

supply of software assistance, such as the DECsystem-10.

Patricia Santoni added that there was a tendency for

programmers developing software for a new machine to use

the new machine itself, doing self-hosted compiling and

debugging, and that if we are really interested in

developing a good programming environment for DOD-i, we

will have to advocate strongly the use of sophisticated

tools. It will require educating many programmers anO

forcing them to use cross-compilers on the host machine

that has all the software tools. Tom Cheatham remarked

that the Honeywell Corporation had done exactly that, and

with great success. There were comments on the issue of

forcing programmers to use the new tools, and it was

agreed that DOD-I compilersshould always be accompanied

by the PDS so that programmers don't go back to their old

ways.

But then Crocker pointed out that such a position

implies that any machine that supports a DOD-l compiler

will now be Lequir!ed to support the PDS as well, which

could be a severe problem, since the current Pebbleman

specifications do not require tmat, and since there might

be resistance tc the idea.

146

Peter Elzer argued against the large-system view,

relating the development of the PEARL system which began

in 1969 with a large, central facility. The field

workers found it unusable on small machines.

Communications were a severe problem. Instead, the tools

were developed on the small machines.

E Taft said that the issue was not whether everyone

must switch to some large system, but whether the tools

become part 3f the requirements of DOD-l "so as to

promote transportability." He also added that problems

in communication between large and small machines were

lessening all the time. Balzer then suggested that there

be various levels of support systems, including some

scaled-down versions to run on the small machines. The

National Software Works (NSW) might provide a model as a

central source of tools, although the actual NSW

structure is not easily decomposed as the preposed DOD-l

system should be.

Many people agreed that there will he significant

financial savings with a POS, and that the existence of

the PT)S must become part of the DOD-I requirements.

Maintenance systems now in use

147

Bai zer asked several peo ple to expla in what

maintenance tools they use. Captain r-. Anderson from

Camp Pendleton described his system (MCF-ll) in which

programmers use context editors, pretty-printers, and

very detailed cross-reference listings which include

English text, written by the programmers, for each

procedure. They are working on augmenting these listings

with information about input and output parameters..

Peggy Eastwood (McDonnell Douglas) related that

their editor keeps a detailed account of what was edited,

who did the editing, when, etc.

Henry Stuebing (Naval Air Development Center)

described a maintenance feature in the PASP system

(Facility for Automated Software Processing) where the

designers wrote conditionally assembled code where they

anticipated later changes. They also use a set of test

cases after every change; the entire set must be tested

before approval is granted.

Several people commented on the need for

sophisticated debuggers, with breakpoint facilities,

tracing features, and a way to simulate interrupts.

Finally, R. Morris (Bell Labs) related that the

maintenance cost of the interstate toll-call switching

machines was closer to 99% of the total cost of the

system, and that the history of maintenance on~ these

148

machines is enormous, far beyond what most of those who

favor automated audit trails could imagine.

149

Session 6B: Test and Measurement

Sam DiNitto,Chair

S. DiNitto:
[DiNitto began by reading Section 6.3 of the draft
Pebbleman Document concerning "Test and Debugging
Packages". This Section required that test and debugging
programs interface with the executive on each target
computer and that they have at least three capabilities:
(1) seledtivie tracing capabilities at different system
levels, (2) symbolic alteration of the contents of memory
or other storage devices with memory alteration
transactions recorded in a journal, and (3) the
capability of printing the history of test events in the
journal. DiNitto continued by commentirnq on some of the
realities of testing in military systems.
(Unfortunately, the tapes are fragmentary in this
Session, and some of the continuity of ideas has been
lost)]I

In thinking about Section 6.3's basic statement, a
capability will be required for diagnosing the performance
of programs before and after they are integrated into a
system. In military systems, one tends to develop very
large test scenarios which are run against the system each
time a modification is made. When a bug is found, (and here
we've been collecting data for quite a while on cost
performance, on a system with a life cycle of about 8 years
with regard to maintenance costs) , about 15% goes into what
we strictly call 'fixing software bugs'. Okay, so now
you're talking about 2-10 times the development cost, but
instead of fixing errors, obviously not all these errors are
introduced during the development stage because of the large
amount of development that goes under the guise of
maintenance. In looking at 7.6.3 and 6.3 I've come up with
a synopsis of basically what they're saying and I think I'll
give you some of my own ideas. The first item, 7.4;.3, is
for a test input and specification control language.
Basically, the point that was made is to prevent the
programmer from having to generate his own test driver.
There are systems which exist to prevent programmers from
doing that, but this is the first I've heard of a test input
specification language. So, mayhe the person who wrote that
is here and can shed a little light on it for me. Okay.
another point is there should be some sort of symbolic
interactive debugger. The next point is mine. From
experience we ye had with these sort of t:'ols, I think the
weapons systems and the defense systems are getting the best
benefit from those which do not introduce an overhead into
the actual software. There are many debugging systems which
do not introduce any overhead to the actual software. Now
this means that they have to keep around a lot of
information on the programs, e.g. symbol tables, and so on.
In addition, one needs other things -- such as dumps, maps,
and breakpoints. I was thinking of subtitling this "Yes
Virginia, we Still need core dumps."

150

R. Balzer: I'm having a little trouble with the idea of no
overhead in actual programs. If one has a conditional
breakpoint in the program, then you have to execute the
condition everytime you reach it How is that, "no
overhead" ?

S. DiNitto: Basically, it's not going to increase the size qf
the program. The symbol table would be there as well as
other information that was needed to find where in the
program to put the breakpoints. The programmer would tell
where he wanted the breakpoint by symbolic reference, and
basically what it would do is to modify one instruction,
make it jump to the debugging package, and then jump back
when it was done. Dr. Nelson would like to say a few words

later about the PACE system. I remember they kept the
probes in the code and they amounted to about a 20% increase
in the overhead.

E. Nelson: But usually that isn't kept in the probe when you're
running operations unless the people who are running it want
to collect some data during actual operation as opposed to
during test execution.

S. DiNitto: I remember there was a particular situation where
NASA did leave it in the operational program.

A. Gargaro: Perhaps if I can just relate what is done in the
AEGIS program using CMS-2.

(Gargaro proceeds to describe the debugging tools in
AEGIS which are summarized as follows: First there is
source debugging. Second there is an interactive
debugging system which works off a symbol table generated
as part of the object code. Finally, a third mechanism
is a tool which can go through the source code and insert
more specific types of probes].

S. DiNitto: Contrary to what I heard this morning, patching is
still done. At Tinker Air Force Base, they have a goal that
after experiencing a problem, they're supposed to be back up
in 20 minutes. What they do (and it was one of the
strongest reasons for not using high order language) , is to
look at the problem in binary, or octal, or hex, --- and to
come up with a solution. Then certify it, put the patches
in, document it, and get the system up. Now they only
reassemble and relink once every six months which makes it a
real problem for using higher order language, becausa you
cannot always guarantee you will get the same actual
instructions out of the compiler that you would from the
assembler.

R. Balzer: It would seem to me that one could have this
capability by using an incremental assembler which , given
the symbol table from the output of the original assembly,
would allow you to use source level assembly statements and
would do the patching for you. That could be done with more
accuracy and reliability than people could dc it. So you
could have a tool which helps you operate that way and it

151

could also do your audit tracing.

S. DiNitto: Right. I'm hoping I can spur some ideas on how we
do it in an HOL. Another thing in the PEBBLEM1AN was the
requiremnent for some sort of hand tester or automated
verification system. TRW has one called PACE, GRC has one
they call RXt3P for FORTRAN. We've got one called 1ANS
(Jovial Automiated Verification System) . Basically they
provide the ability to trace, and to provide a frequency of
statement execution. At least in JANS and RXRP, we've been
able to make it do the same thing. Another item is
development of efficient test scenarios. They do provide,
in some of the systems, certain assistance in developing the
test cases. You need names of a particular module, unit, or
statement and information on "how do I get there?" Now
mathematically it can be proven that you can't do it in
every case. But we've seen, in the majority of cases, that
it can give you some nice hints. The other thing is timing
information. How long does it takCe something to execute or
what's a good estimate of it? As the compiler goes through
the generation of instructions, it has stored away a tahle
of times for particular instructions. Mow it can't he a
hundred percent accurate, but it can give ideas of the size
and the timing. we're talking about tools and T think the
testing process takes on the average 4C0% of the development
time. Yet the PEBBLEM~AN doesn't seem to address those tools
very well, in my opinion. Dr. Nelson has agreed to give us
a little rundown of their experiences with a couple of
systems.

E. Nelson: We started back in 1969, being concerned with the
questions ' How much testing is enough?, and "Is some of
it redundant? Next could we develop some objective measures
of it? One of the first ideas was to determine which
statements are executed in a program. An initial program
was developed called FLOW which could instrument a program
and count the number of times each statement was executed.
Soon they discovered that in large programs they were
collecting a lot of data and that created problems. But one
could analyze the program into structural units called
segments, which are such that if you execute the first
statement of it, all the rest of the statements in the
segment are executed. The remaining statements would be the
transfers or the branches between the segments. So we
developed a system called PACE, addressing this whole
question of the collection of data, building test data
bases, and using this information to develop a measure of
test effectiveness which was a very simple fraction of those
segments that were executed to find out how we could
generate test cases that would exercise all of these
statements. We developed a better algorithm to collect data
and the one Sam mentioned for NODAL is a quite
cost-effective one, in that its expansion and core is very
small and on execution it's very small --- in many cases
under 5% and rarely over 10%. One of the things we did was
to take some programs that had been tested by conventional
methods and run them through the test analyzers using
original test cases. Then we took the faults that were
found in the operational situation and analyzed where they

152

occurred. Conventionall- prepared test cases did not
exercise all segments, an~t almost all the faults found in
operation were in those segments not exercised. This
stimulated interest in the tools and their use. One of the
areas we've had quite spectacular success with is in
delivering operational targeting programs. In about IQ7 3
when the first delivery was made, a rather spectacular
reduction occurred in the problems encountered in usage. in
this first one delive-red, in their whole acceptance testing
they encountered no problems and over a lifetime of somewhat
over a year, only two small problems were encountered. To
understand why the tools work as well as they do, one has to
look at testing. You're testing against the functional
requirement. You make a model of what the program is trying
to represent and verify that the proqram corresponds to this -

model at various points and develop an inference as to its
behavior at the points in between. So test tools of this
type can be of great value to catch a great many of the
errors, and to produce dramatic increases in reliability.

R. Balzer: Two questions: On that study that you mentioned,
most of the errors occurred in the untested portions of the
program. What percentage of the errors were found in that
untested portion?

E. Nelson: Well, the sample wasn't necessarily very large but I
think it was over 90%. 1 wouldn't want to draw a general
conclusion from it.

R. Balzer: The second question is, what percentage of your
development cost do you typically spend testing?

E. Nelson: Somewhere between 40% and 90% of it on the large
systems.

R. Balzer: That includes debuggincy them, too? I~e. getting
rid of the errors you find?

E. Nelson: Well, one of the faults I would find with the Praft
PEBBLEMANI document is that it treats test and debugging as
all one subject. We tend to break it up into unit testing,
integration testing, and finally system testing.. There are
different types of tools used in each phase. In system
testing, one of the important things is how does the test
case relate to the requirements. So one has to develop a
mapping of the test cases back to the requirements and to
particular sections of the code. There's another aspect of
these tools. Finding an error and fixing it means you've
changed certain of the structural components, and there are
two problems here. One is that when fixing an error you can
introduce errors too. One of the things we found by, having
structural information telling you which sections of the
code were executed is the criterion that you've fixed the
error is "correct execution of the test case that found the
error". We say you should also cause execution of another
test case which exercises different logic paths so it will
have some different means of entry into these parts that
were corrected and relates different sections of the code.
in maintenance, you're changing only a part of the code. In

153

the retest, you want to choose only those test cases that
will exercise the parts that were changed. So you can use
structural information to reduce the 'amount of test cases.

S. DiNitto: I'd like to pose to you one other item. On the
subject of identifying phantom paths, I was wondering if you
could get into that a little bit.

E. Nelson: Applying our intrepretation of a program as the
specification of a computable function, you can partition
the input domain into disjoint subsets which exercise
different lojgic paths. Then the question is, how many of
these paths are there and how are they related to structure.
If you construct the paths from a branching table many of
these paths are not executable. I call them phantom paths.
In small programs, there may not be too many, but the larger
they get the more they have and the paths that are
executable are a small fraction of the total number of
apparent paths. Also, phantom paths complicate the writing
and checking out of programs. If, say, only a few percent
of your paths are executable, when you look at the code text
you have no visible cues to tell you what the real logic
structure is. So the only way the programmer can find the
errors is when he goes to execute the program. So one of
the questions raised was to identify which are phantom and
which are executable paths, and, havinq done that, can we
rewrite the program so there are no phantom paths? T also
found another source of artificial complexity. In
constructing the actual functions that a program performs,
we found some of the paths computed the same function,
although they went through different paths and so there was
a functional redundancy. Also another thing was found, this
being particularly true in those cases which were data
processing oriented as opposed to being mathematically
oriented. People were used to thinking about functions in
the mathematical sense, but when you come to a data
processing problem, they don't usually think of that as a
function, but it can be described as a function too. We
also found that on some of these programs, when they were
rewritten they not only had fewer higher order language
statements but also compiled into less object code and took
less execution time.

S. Gerhart: How would various control structures or various
notions of structured programming influence the phartom
paths? Would their use introduce more or less?

E. Nelson: We found that most of the programs when rewritten in
this functional form were also structured. In many cases

* they were initially structured. Typically we found that the
average programmer in applying structured programming
follows the rules artficially and this contributed to making
phantom paths.

S. Gerhart: It's easier to put in a boolean variable, isn't it?

E. Nelson: Right, or to put in a flag that keeps you reminded
that the decision has already been made. There were some
cases in which the structured form did not have the simplest

- 154

structure, but in many cases, when you do eliminate the
phantom paths and the functional redundancies, the result
usually meets the criteria for a structured program.

R. Glass: Are phantom paths determined lbased on the coverage?

E. Nelson: Well, to identify a phantom path you have to show
that there is no input that will cause it to execute and
what we did was construct the input domain anO construct the
various subsets that belong to each executable path and then
find out whether you covered the entire domain.

R. Balzer: First, how much of this phantom path analysis and
restructuring is automated and how much is manual?

E. Nelson: At present it is manual, but a lot of it can be
automated. Now some of the data for this actually came out
as the by-product of tools like NODAL so that there's some
partial automation.

K R. Balzer: The second question is about the restructuring. Is
it basically a technique of copying code in a place after a
join and a forkout. Is the idea to copy code and build
simpler paths?

E. Nelson: Well, I developed a notation in which you could
represent these various code segments and branch
expressions. Then using that notation one builds the
functions that it performs. Having set up the functions in
this notation, one then looks for common elements in them
and develops a branching expression that covers the common
elements.

R. Glass: There are a couple of categories of errors that you
don't get at by the totally rigorous use of a test coverage
analyzer. One of them is pieces of logic that have been
omitted when requirements aren't_.satisfied in a program.
Another is the more difficult problem of combinations of
loqic paths, where a program may fail because you went
through that logic path after going through three other
logic paths to get there, and only that combination would
fail.

A. Gargaro: I reviewed a paper which dealt with the formal
testing of software reliability. The methodology that was
proposed was that you determine an input space using
Dijkstra's predicate transformer. Basically, what the paper
tried to do is extend the concept to determine software
reliability based on a set of weakest pre-conditions going
into a function to be satisfied. Normalized weights are
assigned to successful outcomes of these pre-conditions
being met. The paper goes on to suggest that once you have
this measure of reliability, you can perform empirical
testing and derive Baysian statistics to determine when the
software reaches the desired reliability. I should caution
that in this paper there were some extensions to Dijkstra's
work that I did not think were justified.

E. Nelson: Note that the subsets that I spoke of here are a

155

more simple terminology for saying what fijkstra calls
'weakest precondition'. Tt's a specification of the subset
that will cause execution.

S. DiNitto: Thank you Dr. Nelson. I think it's obvious path
testing isn't the total answer but one of the best things
we've right now. Yesterday in Dave Luckham's session, we
talked about formal verification and it's quite obvious that
isn't here right now , a least for a system the size we're
talking about. I think path testing is really state of the
art right now.

S. Gerhart: We might mention symbolic executors, which are
between the path testers and provers. In the limit, it
would reach a proving kind of situation but these have been
found to be uselul although they're not easy to use because
they require some theorem proving capability, but they are a
little more effective than testing with actual data.

R. Balzer: The very first FORTRAN compiler had as part of its
compilation process, a symbolic executor that determined
which part of an if statement was more likely to be executed
first and used that as a basis for deciding which branch to
put immediately after the conditional and which branch to
reach by a skip statement. So this symbolic execution
technology has been around for quite a while.

S. DiNitto: Also, that first FORTRAN compiler made a lot of
phantom paths. I was told there was something on the order
of 20,000 instructions you could never get to. That might
have only been one path. Do we have any other examples of
interactive debuggers, path testers ,etc.?

R. Taylor: I think we should think of testing as not only
occurring on the end product, but also on higher level
representations of the programn, because if you are able to
symbolically execute your design or, in some sense, test
your design, you're going to be more sure of your production
process by way of the fact that you generated a great deal
of feedback.

S. DiNitto: I think tnat some of that is done right now, if you
follow IBM Chief Programmer Team methods, using walk-through
at the higher levels. As far as automating that, I don't
think they've done that much work.

E. Nelson: There has been some effort in what we call
functional simulation. It is taking a preliminary design
and developing a simulator at that level. Simulators may
not be a hundred percent representation (independent?] , but
wringing out a design with a simulator often is better than
waiting until implementation.

A. Gargaro: There's a certain class of errors that I don't
think is ever going to be detected except through very
exhaustive testing. For example, the compiler interacting
with its run-time system. Throughout this Workshop I've had
questions pertaining to run-time systems and to just how you

156

isolate them frout a compiler or compiler tool. We have a
compiler we've tested exhaustively, and we are very
confident as to its reliability. We have developed a very
high degree of confidence in the compiler's reliability, and
we may have done this through giving it a number of test
cases, or it may have been put through a verification
system. Someone in the operating environment makes a change
which impacts the run-time system the compiler interfaces
with. For instance, someone enters another error code in
the run-time system. This error code is very important and
should be picked up and analyzed by the compiler. However,
the compiler writers were not notifieO of this, and when the
compiler executes it gets this value which it knows nothing
about, and the compiler fails. I don't see any way around
determining this type of failure execept through testing.

R. Balzer: This is a clear case of maintenance. The
environment of this program has changed. That changes the
specs. We've argued about how one does maintenance as an
extension of the development cycle. You must have that
either the change doesn't affect this program or you must
find those places that it does affect. once it is
identified that the environment has changed, and that it's
changed this particular program, then it is just like any
other maintenance problem.

S. DiNitto: Why are we so worried about testing? Why not Just
shake it down in operation for a while? In some cases, it's
obviously not possible, and in some cases it isn't really
that serious. It's just the general cost --- an error costs
about ten times more to correct if it's detected during
integration testing. In the maintenance phase, the cost is
,ip around one hundred times what it would cost to fix it
during the test phase.

--------- I just want to say something about the testing
environment. Usually there are two separate environments
and I think they both need to be dealt with. The first is a
very favorable one that typically takes place on a large i
host computer with a lot of tools available. Another
environment is the real-time computer where it's eventually
run, and that's usually a very sparse environment with
almost no tools available. I think that's the environment
where we need the most help.

S. DiNitto: I'll have to agree with that. We've come into
contact with quite a few situations like that where the real
computer's even in the development system. one thing Jim
Prescott and I discussed briefly yesterday is "what is the
test specification language? When we had talked about it we
were thinking about it is a way to control production of
tests, and the modification of tests. I think it's quite
obvious that in a lot of cases the tests become much larger
than the actual operational software. Have you thought
anymore about that?

J. Prescott, We would like a test driver of some sort that
gives the programmer a way of specifying the domain of
inputs for his program rather than having to write them all

157

out by hand --- some sort of a test specification lanquale
to tell a test driver that these are the inputs I want
delivered to my proqram, these are the sequences that I want
certain pieces of the program executed in, and these are the
outputs that I would expect out. That language would check
to see that what does come out is verified against what is
specified should come out. Concerninq the topic of quality
assurance, personally I've never been too impressed with thc
test data that have come out of this quality assurance
effort and if I can extrapolate it to a general weapons
system I have a feeling that the same situation exists
because in many cases it's the same people developing the
software. Sob, can you shed any light on this? How is
quality assurance organized right now? Or is this a
recognized deficiency? Is it a brute force thing?

R. Glass: The brutally honest answer to the question is
software quality assurance, as I see it applied at this
point in time, is typically a rather control oriented,
measure-the-obvious, kind of thing. We do a lot of things
about configuration management and library control systems
and document review, but we really don't do very much about
the quality of the software itself. I think there is a
historical reason for that --- most of the people in
software quality assurance, in my company at least, came
from the quality assurance side and don't understand
software very well. Did I answer your question?

J. Prescott: Yes. I think a lot of the tools we've talked
about here should be tools for those SQA people to come in
and determine the amount of coverage that the testing has
done in the software. So I think that the people who should
be looking towards using a lot of these tools should be the
SQA people themselves.

R. Taylor: I think it's important that those tools be used in
the proper manner though. You can have a quality assurance
organization that operates basically in an adversary role.
TRW has a program called STRUCT which does a code audit just
checking to see what kind of construct a person used when
they wrote the code and the environment where it's used.
Here's a tool out there to help you keep an eye on what
you're doing.

R. Glass: I also want to say some positive things. It's also
the responsibility of SQA in our company to do some of the
things that Taylor talked about in providing the tools for
the project world.In fact, one of the tools we're building
is the test analyzer --- a rather weak version of what Dr.
Nelson talked about earlier in this session.

158

session 1-: Training an(Eucation
Tenneth Bowles, chair

K. Bowles: If we want to have a provocative discussion I think
we should have one of the service people live us sone
guidance or we will be talking about two worlds. my feelinq
would be that for the language implementation that's going
to be widely used starting in the 1980's, training is going
to have to be developed well before the language is
available to use -- a chicken or egg proposition. Do we
start predicting within the restraints we know about what
the language is going to look like, work on some of the
problems, and train people to work with the language at this
time; or wait until the specifications are known in detail
and then start constructing teaching materials which will
require a year or more to put together?

P. Cohen: You talk about mainly training the programmer and
possibly the first and second level supervisor of the
programmer. Note that the DOD language will be used for
embedded computer systems, and not for a software project
where the software manager is the program manager. In the
systems we're talking about the software manager is usually
the manager of one portion of the project and there is a
whole systems organization over him. In order for the
language to be accepted, the overall project manager has to
he aware of the software technology that we're trying to
adopt.

T. Standish: Dave Fisher told me that he had a question he'd
like put on the agenda -- How can DOD encourage universities
to help with the training of people competent in the
language and the environment in such a way that it benefits
DOD?

J. Shen: A lot of times, even though we know the language or
the material we have a hard time trying to teach it to
people. We should be aware of the levels at which we are
teaching -- we are going out to teach service people on the
language, but first we have to teach the instructors to
bring tthe message to the service people.

K. Bowles: In San Diego, by and large, I have the impression
that the operation is focused on training new recruits --

people that are low scale compared to what we're concerned
with here.

P.Santoni: You'll find most people have little background.
They come up through the Navy. You'll find the minority of
people who are programming today are from the universities.
Very few come straight out and go to work on programming
systems. Most of the people you find learned computer
science from the ground up. They were mathematicians or
physicists when computers started to be used, and they
became programming staff. Their background may be from
COROL to FORTRAN to maybe CMSP, but mostly assembly
languages.

159

J. Shen: (.4r. Shen pointed out the necessity for understandable
and interesting reading material in presenting and teaching
the DOD programming language.]

Col. Whitaker: It's true that we do not have good manuals for
any of the DOD languages. That is very important. It's not
all that good on the outside either, but r in r)oDl it is so
shockingly bad -- there just isn't anything at all. A good
manual is vital. The most useful thing I find in any manual
is examples. That's something they seem to avoid at all
costs.

S. Fickas: Why are they so had? Is it the state of the art?
Can't people write good manuals?

Col. Whitaker: Writing a good manual is a very rifficult thinn
not something that you just knock off, or qive to a

contractor as the lowest bidder. ... For managlers there
would be an interesting point in adding 16 hours to the
Defense Management School. The School is an organization
which trains systems program directors. You go from there
to manage a major program. They have a software engineering
thing now.

S. Fickas: Where is that school?

Col. Whitaker: Fort Belvoir. It is a Defense wide thing and
that is the key. There is another managerial operation
called the DOD Computer Institute at the Washington Navy
Yard and you would think that it teaches all about computers
to everybody in the DOD. But there is not one person in a
hundred in the DOD that knows it exists. They offer 50~ or
60 courses, but I've never heard of a graduate. For some 1
reason they seem to be very obscure. That is a place where
you could develop courses, and they're professional course
teachers. They can even develop courses and go out and
teach them at other installations. The Air Force has a
school for instructors. The Air Training Command teaches
programmers and the Navy has a similar operation. The ones
that go through that sort of exercise really do get very
good training. most of the military development takes place
during contracts. Civil ian contractors get somebody off the
street, and he gets 9 days of traininq, and he is a
programmer. He is released to pl.ay with your hits. It's
not just T)-- that's how your airline schedluling prolram
got written too -- the same company wrote that too.

R. Kling: I'd like to address the quality of language manuals
in the military. There are good electronics manuals I've
seen coming out of the Navy. There's a difference in text
in manuals. In the private sector, the best computing books
are language texts. Application manuals are written by the
manufacturer, but FORTRAN and LISP books are written for a
textbook market and they include examples that really guide
people through the language.

K. Bowles: How do you see the impetus coming in the way of
programs or contracts or management decisions that will put
resources into causing some of these things to happen?

160

Col. Whitaker: It's very difficult to say. we can initiate
some materials and techniques in this area, indicate that
there is a large enouqh market, and encourage other places
in the DOn or outside to do it. The traininc has to he done
by orclanizations that do training today. The key is to show
that the training works out.

J. Meehan: I think there is a distinction between manuals and
texts. Manuals are written by programmers and tend to be
very technical and are horrible for learning. That's where
all the answers are. If you need to know how some function
is implemented that's where it will be. Texts are
generally written years later by people who've had a long
period of experience in teaching the language or using the
language. The talents for writing manuals and writing texts
may not be at all correlated.

D. Kibler: I think it's unfortunate that we don't have someone
here from IBM because that firm has a great commitment to
education.

T. Standish: IBM was responsible for programming the NAS Stage
A Air Traffic Control System which was initially tried out
in Jacksonville, Florida. They scraped up ninety day
wonders with ninety days experience in PL/T, and set them to
programming this immensely complicated thing with a football
field full of radar scopes, complicated flight strip
printing, graphic data block handling with a lot of
complicated, mechanized hand-offs, and an interface to the
controllers. With absolutely appalling cost overruns they
had to replace the computer from a single ('2(l to a double,
to a quadruple, to a Model 65, to four MoOel ,'s anH then
ultimately to '7's because they mis-estimated the amount of
code. The first software release was absolutely a marvel --

426 controllers signed a petition sayinq "Get it out of
here!" So it's obvious that the industry, even if it does
have a focus ott training, has in some cases done appallingly
poorly in making sure people are certified and competent
before they are hired onto these enormous system jobs. And
so. perhaps, taking up on something that Whitaker said,
there should be something like a certificate or a
programming license. Just as you don't let people fly
airplanes without certification of some sort, maybe you
shouldn't let them touch a computer until you get your
programming license or your DOD rating or something like
that. I guess it isn't our role to come up with management
solutions her. Rather we're supposed to be addressing
technical issues. Nonetheless, you could write contracts
with teeth in them by saying to a civilian contractor that
"If you're going to bid on this, you have to certify that
each one of your programmers has a DODl rating."

J. Shen: I feel another thing we want to make sure of is that
DOD right now is a transitory service where people come in
and then leave. And if we do not make training much easier
to learn, the guy who takes two years to train -- by the
time he's done, well, he quits because he gets hired by
industry and gets higher pay.

161

R. Kling: It's a misunderstanding of technology to assume that
it's easy to focus on technical issues and then to assume
that managerial issues can be dealt with easily by someone
else. I've got a position paper which deals head-on with
that. To assume that a language like DOMi can have positive
effects under random managerial concept control, which are
not specified as necessary parts of the language use, is
really a fundamental error.

K. Bowles: I would suggest briefly one approach to training
that I think may be one possible way of working with a
population of people who are at least as motivated as
beginning college students. I'm talking about use of the
training method which is the personalized system of
instruction. It is a method which recognizes that
conventional lectures are a very poor way of communicating
to the students. It's been proven in a recent study of one
large population of students that the lectures contribute
virtuAlly nothing, particularly in this environment of
self-paced, personalized systems of instruction. I feel one
should think carefully before making a big expenditure -

comparing the expense to implement automated quizzes, for
example, or drill and practice material that leads up to a
student being able to evaluate how fast he is going through
the materials, with the instructional staff to evaluate how
fast they are going through.

(Bowles points out the value of having students progress
at their own pace.]

I think that since we are talking about a fairly large
number of people, that with an investment of in the
neighborhood of 50 hours of preparation time per contact
hour, something should lead to a number of different
programs being well within the reach of investment. We also
use people we call proctors. In the university environment,
these are junior or senior level students who have taken the
same lower division course as the freshman or sophomore.
You can make a modest investment in automated practice and
quizzes, and increase the rate of productivity of these
proctors by a factor of 2 or 3. We could probably do better
than that by further working on the text and course
materials to refine some of the areas which we discover are
sticking points for a large number of students. Rut in the
meantime, we have succeeded in largely eliminating the
routine duties of the proctors.

T. Standish: One of the ideas that strikes me as very valuable
is to have examples of large complex programs published in

* the literature of DOMl for study and learning. in England,
Tony Hoare is trying to start a series of publications where
you take large pieces of software, such as operating systems
or text editors, and publish the entire listing with a lot
of comments. WVhitaker said this morning that there's a
factor of two improvement that can be achieved just by
better training at one level. There's also one other well
known phenomenon --- the Software Learning Curve. It says
the second time you do a similar system to one you've done
before, the resources needed are cut in half, and sometimes

162

the third time around they go down to one sixth. Your
estimates of how much you're going to need get better and
better the more often you do it. There is a tremendous
benefit not only with being familiar with examples of the
language as a medium to write programs, but heing familiar
with the kind of programs you' re going to be writing.

P. Cohen: I feel we have to take a transition plan approach to
training here. We have our programmers now who are used to
using assembly language, FORTRAN, etc. Th3y have to be
trained in using a new high order language.

(unidentified): Our experience this year with trained system
programmers who just graduated with experience in the use of
Pascal, is that they are in such great demand that it's hard
to believe. They've had the pick of the large industrial
firms. It's an indication of the sort of demand and the
fact that it's not being satisfied.

P. Cohen: I don't believe the samne training in Pascal given a
FORTRAN programmer should be given to a machine language
programmer. The FORTRAN programmer should first become
familiar with the cognates in the new high order language of
FORTRAN statements, and go from there.

J. Shen: I'm still trying to emphasize that DOD environment is
trained by the people we have are not highly sophisticated.
Most are high school educated, with averaqe IQ of around RV
or above. We have a high turn over prohlem. When the P)OD
high order language becomes available, one solution I'd like
to see is mass propaganda, like the communists have done.

Col. Whitaker: Advertising we can do; propaganda I'm not sure
is proper. Perhaps the more important thing is that your
system is built on the machine. In teaching YOU to use the
computer, there is the strong connnection there -- you can
play with it. It's like teaching anatomy and not having a
cadaver. There is much stronger reinforcement and I would
expect much stronger productivity in training benefits when
teaching computer things.

D. Kibler: I think it's a mistake to think you're going toI
create a language that's going to be usable by every high

school graduate. There are several indications that that is
the wrong way to go about it. Dijkstra remarks that the
reason software costs so much is that software firms hire
cheap programmers. lie means that the programmers are not
well trained in the language or in the knowledge domain they
happen to be working in. I think this is indicated further
by the Chief Programmer Teams that have been used by IBM.

K. Bowles: I keep hearing "high turn over", "high school
background", "not motivated to stay in the service", and so
on.

Col. Whitaker: I wouldn't speak about the Navy, but that may he
a little too grim a picture of Air Force proqrammers. The
best programmers I have ever seen in my life were airmen.
Not to say all the airmen are good, but they include the

163

best I have seen. They commonly have a year or two of
college, or are high school graduates.

K. Bowles: Which population do you really want to have brought
up to understand this language in the near term?

Col. Whitaker: Unfortunately the ones that will be using in
'80, '81, and '82 will be primarily contractor programmers

-- CDC, SDC, IBM4 -- because they will be developing the
systemds. We don't have control over that.

R. Kling: Would that change by the late 1803s?

Col. Whitaker: Programs go into maintenance and the military
often takes over.

R. Kling: Does that mean that the kind of programmers that
Shen's talking about will be more involved? Programming
concepts have to be intelligible to a wider range of people
than just the first developers.

P. Santoni: what they say is very true. With contractors
you'll find that they have a development facility. When you
talk about an initial prototype of a system, you'll fincl
maybe one or two civil service people, rarely any military
people, perhaps developing some code, but mostly monitoring
a contract. When it comes to people who sit down and write
the military systems, very few of them are fresh out of the
university. Most people you find there have been through
junior college computer science. At the outside they have a
couple of years of any kind of higher level education, not
necessarily in computer science, but may be hired on as a
programmer, and their computer science backgrounds are
totally different. Their application experience is going to
be small. Those people have no background in the actual
system they will be using, and there is going to be a long
training process. Right now the training class in CMS2 runs
a month.

(Santoni goes on to point out the practical difficulties
of -getting managers to schedule training time for their
people.]

K. Bowles: Would it be possible for folks like that to he

reassigned for, say, 25% of their time over a certain period
to work with package course materials.

P. Santoni: It would be beautiful, and some of that, in a very
limited amount, goes on in my group. ... one of the
things we have tried to do in the project I'm working on is
to educate the management people to the overview. The
"What' s is going to do for me?" -- not the restrictions.
one way we've done this with the PSL/PSA system is to put
together about a 3 hour video tape lecture aimed at the
management level, telling them what it will do for them. A
very important part of this is to get people motivated to
put their people in the training or to allow them that 25%
of their time.

164

P. Cohen: I'd like to pick up Shen's point again about the
propaganda. I think we do have an opportunity to
propagandize this language. We will need cooperation of
such organizations as the hC'4 and the IEEE Computer
Society. We should get someone to give us a half page in a
journal each month for a column for what's going on with the
D)On common high order languaege effort. That certainly is a
legitimate way of advertizing.

P. Santoni: Again, you've got the people in the trenches who
are managing the people who are writingl the code, and you've
got to convince them somehow to loosen up and free up their
people for on-going education. Some of them are very
open-minded, and some of them say "I've got my people
stacked just like that. You want an assembly language
programmer, you want a programmer in CMS2? I haven't got
time to train him; what we'll do is circumvent the CMS2
requirement.'

J. Shen: My boss would sent me to a programming course and when
we come back we can't project six months and so he would
say "Forget about the structured programming. What we did
in the past we giot by with right on schedule; you can try
it on your own." How many programmers are really doing
structured programming? many people at the universities,
maybe IBM. We have short courses, week courses in
structured programming, design, it's all for designers, how
many courses are offered to managers? One day, half day on
structured design to managers.

K. Bowles: The question was raised earlier, "How can the
universities b~e involved?" one thing we're going into that
may be relevant is a collaborative operation with UJC
extension in San Diego which has an office of national medlia
courses. What they're currently promoting and distrihuting
on a mass basis is courses packaged using television through
public broadcasting. The other medium they are using is
through newspapers in which they have many hooks which are
distributed. In both cases the courses are supported with
package materials for instructors or administrators largely
catering to the needs of the community colleges.
McGraw-Hill has a national sales force that goes out to the
book stores in the colleges and knocks on people's doors to
promote this package. Extension has a contribution to make
in that case, as it provides an aura of legitimacy to the
courses.

[Bowles goes on the describe the marketing activities for
his computer based Pascal-instruction system.]

The software that we're using is similar to the software you
will be building in your language. Pascal is a similar
language. I would think that this approach could be applied
more and more specifically to the propagation of DODl. As
the details of the language become available it wouldn't
take very long to package materials to be promulgated
through outlets of this type.

T. Standish: I happen to be a close friend with the computer

165

science editor of one of the major publishers of c~omputer
science and they're doing some very hard crystal ball gazing
about whether or not they should get into the business of
software production and maintenance, along with their text
books, manuals, and other such things. The question of
whether they should get into computerized, interactive media
of learning is related to the possibility that books may
become obsolete a few years down the pike under competitive
pressure from TV terminals that contain an entire hour of
color programming. They suspect that the competition for
books is going to get very severe, particularly with people
who were brought up on six hours of TV a day, and they're
looking with some wisdom and foresight about starting
divisions which will get into the software development and
maintenance game for these educational devices. The picture
commercially may be ultimately very rosy in finding a
receptive audience of people willing to put up their own
venture capital to go through a training medium type
exercise for this language, whatever it shall be called.

R. Kling: I just want to go back to some of the comments made
by Santoni and Col. Whitaker. It seems to me you'.e saying
there are often no incentives for managers to train their
staff in use of the appropriate language practices. The
biggest problem I see with DODl is that many people expect
it to he used seriously in the Fort nix's of the world, not
the University of California's of the world. one of my RA's
is doing a study of programming environments in one of the
major insurance firms here in orange County. He was looking
at systems in use and he studied the software tool
environment. lie found several books on software tools in
their library -- unopened. This is a firm with a fancy
office over Newport Center, a good national reputation. It
is a place that is known as a state of the art, 'leading
edge" software environment within the insurance industry.
And that is a great place, not a mediocre place. I think
it's really important to understand what the Fort Dix's are
like, or the equivalent. it is also essential to understand
what kind of training and incentives would encourage people
to take DOMl seriously.

Richard N. Taylor
Boeing Computer Services

Systems & Software Engineering Laboratory
P.O. Box 24346

Seattle, Washington 98124

Position Paper

Boeing Computer Services believes that the Preliminary DoD Commnon
Language Environment Requirements document contains many important ideas
addressing the systematic development of conmmon language software. Sev-
eral key issues, however, require elucidation and expansion. Chief among
these are the concepts of lifecycle documentation, verification, and main-
tenance.

Under the heading of "Other Supporting Software" and "Project Manage-
ment Aids," the preliminary document refers to tools aiding in requirements
analysis, design, documentation, coding, verification, and testing (among
others). A brief functional description of each is provided. Allusion
is made to the widespread use of a development data base and complementary
uses of the various tools. The impression left, though, is that such inte-
gration and sharing of information is stilted and shallow. In contrast,
what must be reflected in the requirements is that the use of a system
data base (containing everything related to a particular project), the
pervasiveness of automation and verification, and the integration and
pooling of capabilities must characterize the entire program development
process, from requirements definition through code production. This high
level overview provides the basis on which requirements for the individual
tools may be structured.

Such a requirement will promote manageability through visibility,
efficiency through automation, and maintainability through completeness
of historical information. "Maintenance" should not be characterized
as another step in the development process, since it encompasses activi-
ties identical to those in the development c,~t1-(Further, testing must
be regarded as a pervasive activity, occurring during all phases,

The system development data base will be composed of information
produced by each component of the software development environment.
Requiring formal, rigorous, machine readable output from each component
will promote automatic analysis and report generation. Such information
provides penetrating visibility into each phase of development process.

Requirements definition, preliminary design, detailed design, and
coding are all subject to two types of analysis, both of which must be
performed at each step to ensure correct progress. The first is for
internal consistency and the second is congruence to the previous phase
in the development cycle; requirements are verified back to the end user
[Figure 1]. Automation may be employed for the majority of this analysis.
Delay of such analysis only delays detection of errors.

An important feature to note is that the structure of the analysis
should be essentially the same within each phase, only the detail and
external representation of the source text change. In a programmning
environment separate front ends may therefore be provided for the
requirements, design, and coding representations, producing a single repre-
sentation upon which analysis routines may act. Note that the relative
efficiency of the techniques employed may vary with the design detail.

Happily, the several techniques comprisinq the analysis facility
promote integration. Static analysis, symbolic execution, formal veri-
fication, and dynamic testing all possess mutually complementary strengths
and weaknesses. Exploitation of such potential must not be overlooked in
the requirements. An overview of what such a system might look like is
given in Figure 2.

In summnary, careful consideration of lifecycle issues will provide
correct guidance in the establishment of an effective program development
environment. Further consideration of the ideas in thi-s paper may be
found in the reference.

Reference:

L. J. Osterweil, "ASSET: A Lifecycle Verification and Visibility System,"
Proceedings of the Navy Conference on Software Specification and
Testing Technology, Falls Church, Virginia, April, 1978.

LIL

0 U

LI WLI

ou

LI

<zC

-- c-

X: - -

u 0-i
Z LiJ

w zzj
co -

to .iJ - LUJ

o _j W -

cr w -
CL > LUJ

LiL

znz

z o ~ ~ I--oa

LIw u

-LL.

a~ w

zU>

Im w

LLI-

0-0
uu

UL- (DP-

(D Co

-1o w
CC gn

I-CoL :I-z
IACw -io i

<o <

WLLJL LL) -)-
< LiJ

Uo LL) L
X -j

Lww - - L

>~ C) L-)
r-CA 00 Ct

-< (D<Z- -L

zD <-z< ZLLJ - -

:j Co (D - =) -

Lai Li 0

cr Xw La
O. L > -

Co-

_- wu -C

U)) Qw

0 LD

-IL

-L -- ww

-l -i c*..
< 0 0c

< wm

DOD COMMON HIGHER OR~DER LANGUAGE

ENVIRONMENT W4ORKSHOP

POSITION PAPER

from: John Burgey
John Machado
John Perry
Patricia Santoni

r The objective of the foLLowinq is to put forward the concepts on
which we believe an embedded computer systems support environment
should be 'based. They fall bosically into two catenories. First is
the development of a set of integ.rated tools to support the
requirements stecification, aesi-in, devetoomnert, test, maintenance and
managemnent *f DoD embedded Comouter systems usinc the comm~on HOL.
Second is the creatio~n of a center feor the distribution and

F configurati~n manacement of the resulting DoD HOL support environment.

F The foLLowinq paracraphs illustrate the sorts of tools we believe
to be pertinent to such a surort environrent. This is followed 3y
the fundamentals for the estabLi'nhTent o.f an effective ranaae'"ent aid
distribution plan.

Complete, consistent software ree',uirements specification far
embedded cotiuter systemrs Pre a necessity. Thpy are faciLitatee iy
the use of reouiremer'ts r recificatior anc' an-ALysis torcts such as:

*Rernuirements Snecification Lano'ua.~es - unambir!uous, non-
procedural lancuarles which allow th- svsteT Rn3LYst ti
rio'ousty exrress th- rejuirem-nts of the system 'ncer
deveLooment. Communication between particirants in tHs
ohase of the devtlop-rent is made much easier and cLearer 3y
the use --f such- Umnquares. They also provide the ba-,is for
tracino rejuire-ents thro--ihout the 'evelorvent cycle ani
for vaLidatina arc v~rifyin.-. tlie systevr acainit its
requjireme~nts. Fyamr'Los n f s.uch (ancuac~es are t 'i e ser
Pecii re'ments Larv-ua:;e (L'rL), th&- Orocte"' Stat!-ent Lann~,age
(PSL), and tlhe Pe'-'iremerts Stattrent Lan~uace (PSL).

-. Renuirementr Lanliua-JA Processors - comvuter vro'iras 4hcose
inoit is tewt aritten in a requirements snecification
Languale. Tt'ese prcir3me ia.lyze rtis tert for syntactic
correctness 3nr4 create a oa1-a base which records 3tt tf~qt
has been stated conerninn .r sytmudrdvlpert.
ALL processors .roviL'e tle r~p-ns 1,)r ainatyzin- this data
base and issusin-i raprtn which nrovir'e infori'atio.n on the
comoleteness anld ccr-sister'cv of .!q '-%as t-er sail about the
system under devete-p.Tent. Fore also rrovicde reauirements
simulation carabiLities, atlowine the 9natyst to !Ietrr-ine
whether the imoLementation if the requirements is feasible.
Examptes of such reocessers Ere the Utpr Pecuirements
Analyzer (Ukt) v~ich "ro)ceesas URL, the Prn5Len Stateqent
Analyzer (PSA) which rrocesses PEL, arnd the Pejuirements
E'viineerine arno Validation System (PEVS) thich rrocesses
RSL.

*Reqjirements Simulation and ~meina Toc Ls - computer
proarams which r'rcvide the analyst with tte ability to moodL
his reouire-tents in order to ezuerivent with trade-offs and
to evaluate the viability of the reouirecents set.

Careful desi'mn of couiouter systems is one of the major thrusts of
software engineerine in the trfl. It is sunrbored ty such tools as:

*Design Srecification Lannuanes ard Analyzers - lanciuaces
whichare used1to describe the system designer's design for
a system. They are rincrrnus, ccrcuter-rrocessiote lannuaces
which mmy be mrrcecurat or rfn-rrocedurat. Their
accomranylna analyzers check for syntactic correctness and

tr1lS ?ASJ. IS Ci,5 V"111T FA "Wa

?RUM (. JJ rlj~l..lv -- A--

output a variety of data bases, reports, and drawings.
Examples of such tools are SPECIAL, AXES, and PDL.

Design methodology Toots - coin uter-based toots which
suoort and enforce the concents of the associated resion
methodolocy. Exam~vtes of such toots are the Hierarchy
Manager, a Fodule Checker, and an Interface Checker which
supoort HDM.

Desiqn Moaetlnn Tools - comnuter-Lased toots which altow the
desicner to evaluate his cesicr for Derfcrmance and to
oerform tralf-offs. Exa1pLes of such toots are those
rroposed by the Perfc rrar.ce Oriented Desiqn (POD) rroject
and various discrete and continuous moaeLinc tools in
existence already.

The majority of toots available to'4ay fall into the
implementation cateocry. Sore are ptanned for deveLcrrent for cci3n
HOL already; others will have to be orc.vided tefore ary w'rk in this
language can be performed.

Com~iLers and Code Generators - ttp initial ctnoiter
available in this support envircoment wilt he the carimon OL
cowriLer develoned oy the WOLWG. it will aLsD provide a
number of coce Teerators as they are devetooel, alt 3f
whicn will be distributed thr,2u.0 this fAciLity.

Loalers - orccrrT which resotv- external rpferencee aid
5 assign ibeolute addresses to relocitatLe code, so that the

resuLtiro code Tay be toadec intn merory. Loaders dccect as
input the output of one or -ore compilations anl nroluce, as
output, an o.erational rr'v rpr.

Linkaoe Fditers - Drcorans triat are used to cetermine ahich
modules of a rrocran svstpT need to e lo-ied to-ether.
They also trovide various n ir ul ative c atilities fnr
oreoaratiDn of the Load i-3t e.

* Flowchart Generators - Dro'ra-s that accept, as inout, a
source ;roqram and produce, as outr.ut, n flcchart n f trAt
source program. They het one determine the stricture of
existina prrira.s and orovide conrtiarce with various
reouirerents for rrorar- joc.Jrentaticn.

Riqorois testina of atlL software Pl-mPnts orior to checkout on
the actual tarqet hardware is the motivation behind the nevetopment of
an advanced set of testini tnols ir a surpnrt environTrent.

Taroet Macline Emulators - onramn that emutate the
operation of the standaro military co-nnuters to allow for
unit testing of software modutes on a host mactine .
Testing with the emulatcrs makes it possible for many
proqrammers to proceed with testina simultaneouLy without
reouiring exclusive access to the tarnet hardware. This
allows the pronrammers to eliminate many software errors
early in the develorment cycle. They also rake it possible
to emoloy soohisticated debuvninn technioues which are often
impossible on the real machine.

Prooram nebuagers - rrcgrams cr routines that provide

diagnostic information useful in locating errors in a source
vrooram. Debugoers commonly provide thelfottowing kinds of
information: dumps, which record the complete state of
evecution (me 'ory and register contents) at some poinlt,
usually the point of termiinatio~n; snaps, which record
intermediate values of certain iteis durina execution~;
traces, whiich record the state transitions tt'at occur durinoj
execution; and treakr.oints, w.hich interrurt normal
computation and cause dIebunain: activities to commence.
Debugoers may operate either in tatch mode or interactively.

Dynamic Analyzers - cronirAms that aua"-ert srnurce code by
adding counters Pri varinus other statisticT-iatherinq
indicetors, then, execute th-e aet-crented code and -roduce
reports on hpw thorouL-hly tte vprir-us nortions of the soirce
code have been eyercisee. The~e toots aid in deter'-int~i4
when source vroc'ravv-q have been tested adenUateLY, a3nd Wba-t
kind of test cases need tto he su'nitted ir. sursequent runs.
in a'dition, this infcrvation can be used for deemnn
fre~tiently-pxercised r'rorraff. "'odutes, so Ps to isolate the
Tost valuabLe sections tc ortiwrizp. weny Ayr-aic aruityzers
have teen deveLroLed; ttey a r, freauentLy referred to as
program path execution analyzers.

Static An~Lyzprs - nrr:s thit Co"'-ute stptistics tieed 'n
the num~ber of ti'res varinus items Prppar i- B source
proqram. These are -rc..iire, in Lice and are frequently uzsei
to e ri e a me-"'jre 3 f I'!r c o c o - . ,, Yi ry . ' tltic
arialyzers ire often referredl to ds rrorram statistics
gatherers .

*Tost Case Gererators - rira-s Nhat -elr thc user 1isccver
What in-Lit data -.itL txercisc a recifiel t-att in the
crogram. Thcse tos are stilt xrerirentat, in tha~t they
frejuentLy faiL to nerer-ite test data tl-at verifies that all
vrog~ram plt~s h?'Je bLeri testej.

*Interface Ct-ec~ers - crc rzrt t'iAt ex~irine cat3 utitizati:.n
across seciarateLy-cntnit-H mcdules and d eterffine ahether Mel
accessino module interrrets the Pccessed inlorvation in the
intended fashion. As the goals of vrograi" modularity avnd
retiaoilitv are more widely Pchipved, interface checkers
will see t-reater use.

All of tl-e toots that stir-scrt the mnaLytis, desiqn,
implemertation, test, and managemrent vrhanes of solt&ware -roduction are
generally aooLicabLe to theP maintenance phase as weLL. H~owever, in
the scftware maixoterance rhase there is 'renoerntLy increased emrtasis
in the ar -as cof confiouratincr Tnai'ement and control of new software
releases, nrograM, trouble reportir,, softwaire chanae requests,
training, and docum'entation. T')ots th:,t are particularly associated
aith the maintenence nhase incliide these for:

0disseminatirn infcr-ation to users

. change reouest and trouble rerortini

automatic documentation updatinz

*user traininu aias and nanuats

* distribution of software releases

o configuration manaqement record keeoinq.

The oajective of the manaqement tools is to provide project
managers with the means to plan, "oritor, and contrnL the work 3f
their programmino staffs by achievinj a high dearee of manaqenent
visibility throughout all phases of software oroduction.

Manapement Revort Gererators - c.roorR-s that collect data
and nenerate revorts on the status of the software, the
resources that had to t'r evnenepi, an' te activity
necessary to achipve that status. This data nrovides a
manager with the neanE to defire ar. control the software
tasks, assess incremental rrocress, detect treres and
anomalies, :nd assure oFservence of instituted -olicies and
orocedures. The rerortino system can te structured to
obtain sJrmFries ny meaninnful ct-ccri es that can oe
tcomrared with initial 'chedtle, rnpoer, and cost

estimates; this nanace-.ent dati can additioraLty :rovije a
statistical oasP for studvinn rrnirmmer prodiuctivity

. issues.

D Confiouration Manaae-eien Aies - rronrams that Collect
confi urition i entifi ction irf, rration and bistorical ita
that can be used fcr basetinin- rurposes, dcsinn cnan'e
ccntrol, softdare release, av:4itir-, arJ trackinn chnces
throuihowt te rnftare life cycle.

In addition to the nb'e teols, it aill tle assured that, in c rlsr
to perfor the best -essi 'le ierk, the cesiqners and cevel.ooers -f any
conmon HrL system ill have available to tleT the fntlcwinr, sorts of
tools: an on-line h-ln facilitv for assistAnce with the use cf tools,
text editors, tikr~ry rressrrs, cc,-"on utilities such as file
maintenance and co..y ce.-Oilities, art- ne-,uatP trairin.n and
documentation.

The deiree c! surcess of t 'e commcn HIL crc.iram will levend on
the approach taken 1cr the rareer-nt of the Taintenance aid
listribution nf t~e POL scfewere Jeveloopent systeT (i.e., comPiler,
operatino system, ard toots). we rec-rmend the follo*inq aoDroach.
The various coiniters, operatino syttemn and suoportinn items are
develoved and sent to t1- DoD HOL distributi-r center. The center
will have an autc'ateo -eans (e.q., the ARrAt%4rT, AlTO!1DN I) for tne
distribution and conputer--to--comouter download of the items. 3nce
an item is received at the distrituticn center, tle center
responsibility will first he to test the new item to assure that it
will function when released to the user. The functinn of the center
Could be extended to inclUde usor- rrovided rroarams and a catalo.iue
to aid other users in locatinq these. Next, the item vill te m3le
available to the gereral Jser, Drobatly by an Rutomate4 announcement.
The user can then obtain a cory (in object come). There will te an
automated vehicle for the reouest ird transmission of the item. The
center will maintain a list of eact, item requested oy each user.
Another responsibility of the distribution center will te to provide
an automated error reoorting system. Th't is, all the DoD HOL system
malfunctions are sent to the Dof HOL distribution center. The center
then contacts the responsible development group and brbadcasts
information about the malfunction to the appropriate users.

L 2:

The distribution center functions as a focaL point for all. system
.oftware and related items. It is the only source for automatic
:rainina aids, documentation, information, compilers, operatinq
iystens, and toots. Alt error reportinq, sugoestions, etc. must Oe
-iuted through the center.

Jon 7ur3py

John '?chado

Jotn Verry

Pptricia Spntcni

~~J~~1S 1AJhZ I3 £T3S m PkT!CL

LEVELS OF PROGRAM DEBUGGING
by Robert Balzer

I.evcls of Program Debugging and Required Language/Run-Time Support

Level 1: Non Interactive batch oriented debugging
Technique: Insert normal print statements in program
Lanouage-Support: None

Level 2: Non Interactive batch oriented debugging
Technique: Insert "debug-tirne" print statements in program
Language-Support: Conditional compilation or special debug statements

compiler switch
Level 3: Non-interactive batch oriented debugging

Technique: Source level trace
Language-Support: Trace statement
Run-Time-Support: Circular buffer for post-rortem dump

Level 4: Read-only interactive "DDT"
Technique: Insert breakpoints, check variable values, statement

at a time execution (with on-line trace)
Language-Support: Accessible symbol table
Run-Time-Support: User interface, symbol decoding

Level 5: Read-only interactive "DDT" with control structure
Technique: + check control stack
Language-Support: + interpretable control stack
Run-Time-Support: + display of control stack

Level 6: Read-Write "DDT"
Technique: + change variable values and/or position within control stack
Language-Support: +
Run-Time-Support: restart computation, interpreter of assignment statements

Level 6.1: Read-Write "DDT" with backup (EXDAMS)
Technique: Time-lever which programmer can control to run

program forwards or backwards
Language-Support: + extended trace
Run-Time-Support: +

Level 7: Immediate execution
Technique: + immediate execution of extended language statements
Language-Support: +
Run-Time-Support: + interpreter

Level 8: Textual program modification
Technique: Callable external editor for modifying a program

unit and continuing computation
Languae-Support: +
Run-Time-Support: + ability to invoke editor and either compiler

or interpreter on a program unit

LEVELS OF PROGRAM DEBUGGING 2
by Robert Balzer

Level 9: Structured program modification
Technique: Editing parse structure of language (ECL and Interlisp)
Language-Support: + useable version of parse structure accessible,

compiler/interpreter driven by parse structure
Run-Time-Support: Special structured editor

Level 10: Extensible debugging environment
Technique: User written tools which manipulate programs as data
Lan-uave-Support: + programs as a data type
Run-Time-Support: + accessible mechanisms (stack, error handler,

function definition, etc)
Level 11: Transportable debugging environment

Technique: Support system written in support language (DOD)
Language-Support: + programs as a data type
Run-Time-Support: + accessible mechanisms

Additional Facilities

DWIM - Do what I mean (Teitelman)

Technique: Automatic error correction

Language-Support: + separation of indentifiers into semantic classes
Run-Time-Support: + accessible error mechanisms

Programmers-Assistant (Teitelman)
Technique: Maintain session history; redo, modify, and/or undo previous commands
Language-Support: +
Run-Time-Support: + either undoable versions of all functions, or use of

extended trace facility
Advice (Interlisp)

Techniques: Quick source level patches to interface between modules
Language-Support: +

Run-Time-Support: Breakpoints and interpreter
File-Package (Interlisp)

Technique: Maintain updated source and object files as programs are chanf;ed
Language-Support: +

Run-Time-Support: Advise facility (to keep track of programs
modified by editor)

Robert M. Balzer

Maintenance

Not part of Pebbleman

Military Definition - all modification activity that happens

after delivery

Existing Characteristics -

dominant component of life cycle costs - 80%-90%

least desireable aspect of programming development cycle

normally performed by different groups than developers

difficulty increases as system ages

Belady & Leman - System Growth Dynamics

-maintenance reduces system structure

-maintenance cost is an exponential function of

lack of structure

-discovered cases of systems going critical

Causes of Maintenance Problem

1. Obvious technological answer;

No technology for maintenance if program development

is a cottage industry then maintenance is at the

stage of nomadic wondering. Maintainers must under-

stand how program is structured (design information)

and how a change will affect that program (dependency

information).

First is a documentation issue about the development

history of the system

Second is a sophisticated perturbation analysis

currently resting upon the simplist syntotic tools

such as cross reference of variable useage and

modification and subroutine calls.

2. More fundamental answer:

Is that such maintenance technology cannot be

created. The current maintenance paradigm itself

is intractable. Reason: Optimization and Maintenance

are diametrically opposed processes.

Optimization spreads information - increase inter-

connectiveness and thereby completely reducing

structure and comprehension.

Maintenance requires locality of information.

Fundamental management problem: At the logical level

at which manager understands a system virtually

every change is trival but at the (optimized) code

level none are. Obvious solution is to operate like

managers and modify (maintain) the logical specifica-

tion. This necessitates a new technology for

reliably and inexpensively reimplementing the

modified system. These requirements can be easily

fulfilled if the developmental history of the

original system has been adequately recorded. The

recorded history can be replayed step by step until

a step is reached which is either invalid or in-

appropriate for the modified system. The maintainer

can then substitute an alternative step (elaboration)

which further modifies the system and the replay

continued to the next invalid or inappropriate

step or until the reimplementation is completed.

The advantages of such a maintenance paradigm are quite

significant.

1. Maintenance becomes an extension of develop-

ment and operates in the PDS environment

with all of the developers tools

2. Development history becomes the guideline

for maintenance

3. System structure is maintained rather than

dissipated

The requirements for this paradigm are the step by step

recording of the development process. This implies a single

wide spectrum language used for both specification and

implementation and methodology of step by step elaboration

to gradually replace the specification components by

implementation ones through repeated elaboration.

A number of prototype systems matching this paradigm

already exist, usually under the rubric of source to source

transformation systems. Several are represented here:

Cheatham, Loveman, Standish, and Balzer. Of these, Cheatham's

is probably the most advanced, and he is already performing

maintenance in this way.

TOWARD SELF-DOCUMENTING PROGRAMS

Edward A. Taft
Xerox Palo Alto Research Center

June 21, 1978

Wednesday's session on program documentation brought out

a number of approaches to the development and maintenance

of external program documentation (that is, aspects of a

program that cannot be expressed in the programming

language itself), and a great deal of work has gone into

developing manual or semi-automated documentation systems

that, to a greater or lesser degree, are integrated with

the overall program development process.

Many people will argue, however, that if a programming

language does not provide the means for representing the

essence of a program in the language, the language is

somehow deficient in expressive capability. While the

goal of designing a language that is ideal in this respect

is unlikely to be met in the near future, I would like to

point out that we have made considerable progress in this

area during the past 15 years or so. However, taking ad-

vantage of the facilities available in modern high-order

languages requires some revised approaches to programming.

Pascal and languages derived from it, including DOD-i,

provide powerful primitives for program self-documentation

through their facilities for strong typing and interface

control. In particular, the distinction between declarations

about the abstractions realized by a module and the

procedures by which those abstractions are implemented

is crucial. Ideally, the user of a module should be able

to learn all he needs to know by reading only the declarations.

Towrd elfDocmeningPrograms

One powerful tool is type articulation, that is, the ability

to manipulate objects with distinct abstract properties

without regard to their underlying representations. The
ability to provide distinct definitions of independent

abstract objects that may or may not happen to share a

common underlying representation is extremely useful.

However, becoming proficient at describing abstractions

through the type calculus requires some significant chanqes

in a programmer 's approach to implementinyj those abstractions.

The second important technique is that of hidinq repre-

sentation of and controlling access to objects throuqh

careful interface design. Since it is not now possible to

completely describe the behavior of an abstract object as

a part of the definition of the object itself, one may

instead control the behavior of that object by defirnn a

limited set of operations on the object. Knowledge of the

representation of the object and the implementation of those

operations is localized to the defining module itself.

While these are hardly new ideas, it has been only in

the past few years that system programming languages

with the necessary capabilities have started to see wide

use. Therefore, it is not surprising that strategies for

making effective use of them are not yet fully developed

or widely known. They are not obvious but require much

careful thought and practice. I suggest that you refer

to (11 for some elaboration on this topic.

A bit of historical perspective is in order here. Early

high-order languages (particularly Fortran) provided a

flat control structure and very limited control primitives.

Toward Self-Documenting Programs 3

Therefore, external documentation of a program's control,

in such form as flowcharts or English narrative, was quite

important. Over the years, the control primitives of

modern languages have developed to the point where many

people feel that the language itself is a superior medium

in which to document the control flow of a program.

The Pascal class of languages has the potential for

enabling a similar advance in a different domain: describ-

ing the behavior of abstract objects. It is essential

that we take advantage of this opportunity while consider-

ing the design of documentation standards and tools for

the DOD-l environment.

[1] Geschke, Morris, and Satterthwaite, "Early Experience

with Mesa", Comm. ACM, vol. 20 no. 8, August 1977.

22 JUNE 1978

Program Development Systems - An Overview

T. E. Cheatham, Bob Balzer, John Esch, Robert Morris
Ann Marmor-Squires, Stephen Squires, Tim Standish, Ed Taft

This paper presents an overview of a Program Development

System (PDS) and a description of the tools required initially

to do effective and efficient program development. Since we

can also forecast that new tools might be available or might

be required 4n the next few years, we want to make sure that

new tools can be integrated as they become available.

To this end, we begin by talking a little about the program-

ming process. We need to lay out just what sort of help we

expect from the kind of system that we are proposing. A com-

piler does not exist in a vacuum. The notion that the program-

ming process consists of an iterative process of source program

preparation, complilation, execution, and debugging is not

a dead notion, but it leads to a completely inadequate model of

the appropriate tools for program development and the way in

which these tools interact.

We start with specifications. Perhaps these are tight and

precise, but more likely they are a loosely understood collection

that needs continual refinement. We start a process of decision

making and the decisions are often made incorrectly and have

to be remade later, decisions to choose certain kinds of repre-

sentations for data, decisions to choose certain kinds of imple-

mentations for operations or transactions or algorithms. We

might try to visualize the whole process pictorially:

page 2

Figure 1

Basically we start with a thing S to solve. We chop it into

pieces, perhaps the input, the process itself, and the output.

If we decide Process is too hard, we might divide it into

process one (PI) and process two (P2). We go through a pro-

cedure that in the end gets us some things --- presumably

modules in DODI which are subject to compilation, loading,

and execution on some computer.

So we want to talk, in some sense, about a system which

lets us represent or contain or implement the boxes and

connections in Fig. 1. A system that lets us get into a

context of dealing with these boxes at a variety of different

levels. The system should let us move among the levels of a

program from the very abstract levels that says "solve problem"

all the way down to the load modules. And surely a Program

Development System should be something that lets us retain

and manipulate all these levels of program.

Now let us state a few assumptions we think we should make.

The first is that we suppose the programmer has access to an

AA0O 090 CALIFORiNIA UNIV IRVINE DEPT OF INFORMATION AND CORP-ETC F/6 9/2
PROCEEDINGS OF THE IRVINE WORKSHOP ON ALTERNATIVES FOR THE ENVI-ETC(U)
1978 T A STANDISH DAAG9-7a-M-0219

UNLASSIFIED LI-ICS-78-83 N4A4 llllf llll
innnnnn..nunn
-mmhEmhEEEmhE
-EhhhEmhmhhEE
-mEEEEEmmhmhEE
n.EEEmhmhhEE-EEEEEI--.mm

1.8

11111 1.0_ 1.6~

MIIROCOY R IO

MICROCOPY RESOLUTION TEST CHART

page 3

interactive system of some sort. Second, we should assume

that that system is of sufficient size to host a Program

Development System. That obviously means it's not the computer

in the nose cone of a Aissile. It means it is something at

least the size of a small 360 or a PDP-11 or whatever.

One of the first questions, of course is: "How do all my

programmers get on that there thing? --- I haven't got one."

As an aside, we should like to make a couple of remarks about

the National Software Works. Such an environment of interactive

tools can exist on a network, with a smooth interface to the

user, and can host interactive program development systems.

The NSW can also provide access to these tools without having

to make project managers spend money from their own development

and project budgets to capitalize the Program Development System

host system --- a distinct advantage. The National Software

Works now exists in some sense --- in the sense that there is a

Works Manager and there are actually tools available. At this

very instant in time, it is viewed as a little klutzy in the

sense that the communications go a little slow for some tastes.

But the point is that the technology is in place right now to

permit people to employ reasonable computers to do program

development. This is the basis for accepting assumptions one

and two --- that people can have a reasonable size machine.

Another thing we have to contend with is the masses of naive

programmers. The NSW, in some sense, deals with deprived pro-

grammers, ones who do not have a sensible machine or sensible

tools at their disposal. The NSW surely demonstrates that it

is possible in principle for them to have one. But what about

page 4

the kid that came out of high school and took two weeks of

training in the city and is trying to code something. We

frankly don't know what to do about him. We think the kings

of tools we're talking about are a little too sophisticated,

but we don't know. Programming is not a task that can be

done efficiently by acres of more or less incompetent and

naive people.

It has been the experience of each of us, and we could

cite that experience, if challenged, that smaller groups of

more competent programmers with proper tools can outproduce

the thundering hordes by orders of magnitude. What we're

talking about are systems that enable the more talented and

more professional programmer to have access to tools and

facilities that let him get about his real business. We can

assure you that it is much easier to build a major system with

three or four people than with thirty or forty (many of us have

done both).

We shall now sketch briefly what our conception of a

Program Development System consists of. We can look at it as

having three components. Theathe question becomes what of its

pieces should be standardized, required, and carefully specified

at this point in time or very soon. We would like to imagine

that the initial experience with DODl will be in the context of

some reasonable collection of tools and components of a PDS.

page 5

[EXECUTIVE

PROGRAM DATA BASE

FACILITIES & TOOLS

3 Components of a PDS

Fig. 2

One component is the Executve, the thing to which you

talk when you sit down at a terminal and say, "Hi there, I'd

like to do something." There is some entity to which you are

saying "hi there", and that entity presumably knows about you

and knows about what files you might want to deal with and it

knows about the tools and facilities you might want to call up

and knows about how to manage all this in some nice, sensible,

coherent way.

The second component, a crucial one, is what we might call

the Pxogtam Vata Saae. The view here is that you approach the

computer to make a few transactions----"Hello, I'd like to

edit my procedure SAM, I've got a few more things to say about

it. Oh, by the way, I'd also like to run my other program

HENRY." You do a series of transactions to update, in effect,

the program data base --- correcting things, defining things,

adding things, augmenting things. It all resides on the computer

and in such a way that you can get at the parts, you can name

page 6

the pieces, you can work with them. We are certainly assuming

the programs themselves are included in the program data base.

We have to say a few things about the programs. We

suggest a hierarchy of levels of representation or levels of

abstraction of a program with the bottom line being the program

modules in DODl. We've got to talk about the ways in which a

PDS goes about house-keeping these modules; house-keeping

the relations amongst them and letting us mcve around this

turf somewhat. Programs will be written in DOMi and, at the

very least, also in a form of DODl, in which, certain things

are missing and are replaced by English descriptions of what

they will later become.

page 7

We think it also important to imagine that the

Program Development System Data base have some history ---

sufficient history to let us know what happened, and when,

so that we can fall back to some previous point, and find

out how we got to where we are. We all agree that maintenance

consumes the lion's share of the total system cost over its

useful lifetime, yet we find that the normal course of things

in embedded systems is that you are maintaining a box of

binary cards, and that an act of maintenance means making up

a few patches that hopefully don't screw up more things than

they fix. Now, there are reasons for the high cost of main-

tenance. One of the problems there, in our opinion, is that

when you are presented with an act of maintenance to perform,

what you have to do is to redo something that was done

originally in a different way --- so what you'd like to do

now is to get back into the context in which the original

decision was made (perhaps you allowed three bits for this

field and now it requires four bits, or at a higher level it

may be "this thing used to have this characteristic, and now

it doesn't") but whatever decision was made, to accommodate

for change, one has to remake that decision in a different

context and follow the effects of that change down to the

actual operational code.

Now in a PDS one would hope that one could arrive at

the proper level of abstraction, go in and find out what

the ramifications are of some change we are going to make,

make the change at the appropriate level and hope that the

page 8

final load modules can be regenerated in some more or less

mechanical way. So we have to have these various levels of

representation of programs and we have to know how we can

go from one to another. The process of getting this refine-

ment has to be recorded in the data base, so that we can

replay the generation of a new system, after we have made

changes at any level.

The third component of a Program Development System is

the set of Sae-LUt.eh and toQL6 that reside there. Let's

just recite a few of those tools to suggest the kind of

things that we're talking about. one of the things we want

to reflect on are the kind of hooks and handles required, and

the patterns of coordination in the overall system and in

these various tools to form a coherent and cooperative PDS,

in which these tools can work compatibly together.

one of the very important lessons to be drawn from our

experience with environments is the beautiful way in which

the tools in such systems can interact with one another.

But that doesn't happen automatically; it requires a great

deal of planning and foresight. One of the important questions

to be answered at this time, then, is what can we say about

tools and Program Development Systems that will let us, over

the next decade or two, add more elaborate and sophisticated

facilities. More fundamentally, one of the questions we

should like to answer is twofold: (1) What are the basic

elements of a Program Development System we should have, in

effect, on day one, and (2) How do we prepare the way for

gracefully and easily adding tools over the next decade or

two.

page 9

Now let us reflect on some of these tools. One of the

obvious tools is something to edit with. Editors can appear

in many ways in this modern world. You can have editors

that are very smart about what they are editing and that

understand the structure of programs (and that's a much nicer

environment that an editor that just knows about text). But

an editor is used to do many things --- to change things, to

define things in the first place, and we can talk about

editors that prompt you to pull things out of you, versus

editors that are passively sitting there waiting for you to

spill characters at them, and so on. Editors are the obvious

tool to produce and maintain documentation.

Another thing we can talk about as a tool is one which

lets you refine from one module to its descendant -- in the

sense of a refinement being a decision about chopping into

pieces or a decision to choose some representation of data

or program, or to say this concept that I was fuzzy about

before is refined now as this more detailed thing. What are

the facilities that let us do these acts of refinement?

Other kinds of tools we might refer to as analysis tools.

There are a large variety of tools for analyzing. The most

simple of these is very likely the one which says "is this

program syntactically acceptable?" This is a very, very

modest kind of analysis, and, indeed, one could argue that

a sensible program editor in 1980 should have that ability

built in. Another kind of analysis is what we call type

checking. In a hard-typed language like DOD1, one of the

semantic things you'd like to know about your program is

page 10

that the types are all compatible. If they aren't, there

is not much point in compiling and trying to execute. The

next kind of semantic analysis might be to examine certain

classes of potential faults --- for instance, looking at a

program and saying "well, everything is all right with regard

to subscripting except right here, where it looks like you're

going to have a problem".

That kind of analysis tool is doing a more sophisticated

interpretation of the intention of the program. Thus, we

can imagine a hierarchy of analysis tools, each looking

deeper and deeper at the semantics of a program, to determine

the presence of certain good features or the absence of

certain bad ones.

Another kind of tool we might talk about is one to

establish some environment so we can run a program. There

may be packages that will provide you with behaviors that

replace incompletely specified modules or software that

simulates characteristics of external sensors and devices.

Of course, we want to execute programs. There is nothing

quite like trying to execute a program to see what happens

when it runs.

We often want to probe a program. A probe can do many

things --- we might want to probe to get some assessment of

where a program is spending its time (this is a cost probe).

We may want to probe it to talk to us (often called break-

pointing or tracing) --- so the program says "Hi, I got

here. What do you want to do now?". Thus, there are a

number of kinds of probes which go all the way from collecting

page 1

data to informing the program to stop and report back to us,

or whatever, that we might like to insert into a program

as we make our first attempts at running and debugging it.

Surely, we want to make queries about the program--

"Who talks to this guy?" -- "Who does this procedure call?"

In a large program, if we change this!, we'd like to know

who is affected.

Last, but not least, we might like to compile a program.

The old model that you prepare a text file, you compile it,

you load, and you go -- is just an inadequate structure

for a PDS. For example, both compilers and analysis tools

share certain parts of the structure -- what the flow

structure is, who gets set where, what the types are -- if

you follow this far enough, you come down to wanting to

forget the notion of a compiler and have the notion that at

some level you may want to take this program and generate

code for some machine. This can in fact be well into the

process of debugging and/or verifying your program -- you

could have run it many many times before you ever think of

compiling.

This is what we want to say to set the stage. Fig. 3

gives a table of the minimal set of tools we think the

third component of a Program Development system should have.

page 12

Command Interpreter (Executive)

Editor

Parser

Some - Code Generators (normally more than one)

Program Executer

Probe Package (trace, break, measure)

Refinement Package (includes optimizer)

Program Queries -- (Who calls whom, etc.)

Test Data Generator -- (Simulates External
device behaviors)

Fig. 3

Last, but not least, we believe that the coordination

amongst the tools must be extremely carefully arranged. For

instance:

(1) We want to be able to call the Executive

from within any tool and get the Executive to

call other tools in a nested fashion --- after

which it cleans up and allows resumption from

the point of nesting of the original tool activity.

(2) We might want to arrange that tools can call

each other (with the user playing the role of a

subroutine which is called by the PDS and supplies

values or commands in reply) so that tools can be

cascaded in very powerful ways.

We know from our own experience that the technology to do

the initial level of a Program Development System as specified

in Fig. 3 is here now, and is of proven value in program

development.

Wiw

page 13

We think it essential that some way be found for such

a Program Development System to be implemented in connection

with the DODI effort. We seriously urge that our view be

adopted.

IA

Ideas on Compiler Valida' on-Testing
Susan L. Gerhart. ISI

June 13, 1978

1. lo bc credible, the compiler validation effort -"ust conform to 'he highes t possible
standards of known testing techniques and use existing testing tools to tl,- utmost.
Tcsting seems to be most successful when performe in the spirit of adversary c',nflict, i.e.
the tcsting procedures do everything known poss ble, within reasonable cost limits, to
demonstrate that the compiler will fail in some way, e.g. by aborting, producing oad code,
failing to compile legal, but perhaps bizarre, progra-s, or accepting illegal progr, ms. This
suggcsts that the series of test programs consist of several forms:

a. Normal, useful programs.' Good candidates for this class include the external library
routines, particularly the application oriented software packages. Such routines will have
extensive associated test data which can be used to test the quality of the code
generated. For new target machines, these progrz-is would need compilation aiiyway, so
the validation effort can kill two birds with one store. Additional programs devcloped for
tutorill purposes which demonstrate aspects of the language not covered in these
application packages can be selected to fill out ti-s class. In other words, ti e normal
programs used for validation can be used for severa2 purposes, thus reducing thr expense
of validation test development and enhancing the credibility of the validation exe, sise.

b. Bizarre, illegal programs. Many people have observed that there are no be tter tests

for the robustness of a compiler than the first przgrarns written by students, in a new
langJagc. Missing brackets, illegal symbols, ill-formed statements, missing separ.,tors, etc.
are all too common, no matter how much syntax inst-.jction has preceded the submission of
the first programs. This is especially true fcr prc-rammers who are familiar with other
languages and experience negative carry-over to a new language. It should b possible
to acquire a good set of such programs after a few classes of programmers have been
taught. A compiler which blows up too easily has been carelessly designed and chould not
pass the validation tests.

c. Almost legal programs. The spirit of the comr-on language is that many rcstrictions
arc compile-time checkable. It should be possible to take the set of normal progt ams used
for testing the compiler and introduce perturbatiors which do not disturb the s ntax but
do violate various restrictions. The compiler should reject such programs with roasonable
error messages.

d. Perturbed, useful programs. As will be mentiored next, it will probably be itecessary
to include additional variations of programs to cover all constructs of the langu;ge in the
compiler validation tests. It should be possible to take the normal, useful class of
programs and perturb them in various ways to get a wider exercise of the com ier. For
example, programs might be do-optimized in vario's ways, loops might be de-: tructured
into conditional and gotos, expressions might be broken down into sinai er units,
parameters might be written in different orders, ccnditional statements might Iave their
branches reversed, etc. If all these perturbations are easily seen to produce (quivalent
programs, then the same test data which thoroughly exercised the test progrars (hence,
the compiled code) should provide a reasonable exercise of the perturbed programs; of
course the results should be equivalent. Such pe-turbations should also pro, ide some
measure of sensitivity of the optimization strates! of the compiler to verioits coding
styles.

2

ihe wording of the Environment Requirements sho d be modified to include vahlation for
roburlnc-.s and ability to reject programs as we' as "compile and execute a standard
srrics, of programs...". 2. The compiler shc-id be instrumented suffi(ently to
demonstrate what is now accepted as the minimal-, acceptable coverage, namc-ly, every
program predicate exercised at least once, which lmplies every statement excrcised at
least once. It would be unthinkable to consider a compiler validated if this coverage
criterion had not been met. Indeed, this require-ent should be applied even before a
compiler is submitted for validation with the standa-d tests.

The standard tests may in fact fail to satisfy the re;uirement necessitating addilional test
programs or modification to the compiler. A typical situation where this difficlty might
arise is an optimization which just never gets invoked in the standard test progr.ims. The
optimization may be of questionablp use and there'ore removeable or it may juct not yet
have been required. Such a situation would require negotiation toward final cc-tification
of the compiler. Any compiler submitted for validation which contains logically
unreachable code should be rejected immediately as carelessly designed and test d.

3. The test strategy' suggested by I and 2 is based on the following observatins about
testing in general:

a. Testing only for coverage is too weak a measure to ensure much reliability.
This claim is theoretically and experimentally demonstrable.

b. Testing from specifications alone (legal and illegal programs) is likely to leave
some parts of the program uncovered.

c. The most effective way of selecting test cata is first from specification- followed
by additional selection for uncovered parts, as shcwn by instrumentation results on the
specification-selected data.

4. The full. range of testing tools should be broejht to bear on the validati.n effort.
There may be tools specifically useful for comp'er testing, either existent or easily
developed. These should be explored and evaluated for merit in the context of ',atidation.

5. A few experts in the theory and practice of testing should be brouf.ht in as
consultants to evaluate the final selection of test programs. Again, the philosophy is to
make the tests tough, while not letting the expense get out of hand. There i. growing
expertise in testing which could help meet these goals.

6. However, the set of test programs might be flexible. For example, expetlence (or
insight) might show that some test programs are redundant and therefore can oe safely
removed from the test set. Or, especially devicus programs might be devc loped by
individual compiler implementors or discovered in teaching or use. Any progrrms which
reveal compiler errors after validation' are especvally good candidates for in.:lusion In
further tests. In other words, the initial validat'on test sets may represent minimum
standards which can be increased with experience. Indeed, compilers might be r* quired to
be re-validated periodically.

3

Ideas on Con.iler Validat!:n - Proving
Susan L. Gerhart, ISI

June 19, 1978

1. 7h.rc are several possible properties to verify about a compiler. One such property
is that the compiler "accept" a program if and only if it is legal. Of these two asl ects, it is
probably more important to verify that if the compiler accepts a program, then the
program is lecal. In the other case, users can be expected to complain. Syntact c legality
(purely related to parsability) is probably not worth formal verification, since parsing is so
wcll understood, almost automatable. Other aspects of legality, e.g. aliasing, sr >pe, type
consistency, etc. are less well uniderstood for both programmers and compile- writers.
Indeed, there may be some very subtle semantic misunderstandings here, which rmakes this
aspect of legality worth formal verification.

The second property is, of course, that the code produced for an accepted p 'ogram Is
semantically equivalent to that of the source, assuming correctness of the run-time
package.

The third property is that the run-time package is correct.

A fourth property is that code will be produced for a legal program, provided that
resource constraints are not exceeded. Again, failure to produce code will rest It in user
complaints, so this property may not warrant verification, at least not initially.

The most important concern is clearly that the execution of the compiled code match the
intent of the source, which of.course is the subject of further verificatiol wrt its
specifications, The point is that there are many properties which a compiltr should
possess, but they don't all require formal verification, or perhaps even verification at all.
The task of compiler proving can be factored by these properties.

2. "hc task of compiler proving can be factored further by the identifiable modti es of the
compiler. There are data structure modules, e.g. expression trees, run-time and
compile-time stacks, tables, code templates, etc. and algorithms, e.g. parsing. register
allocation, run-time and compile-time storage management, code optimization, type
checking, etc. Again, not all of these may require formal verification; test ng, code
walkthroughs, adaptation of published algorithms, etc. individually or toget,er might
sufficc.

All of these components have been extensively studied for traditional compilers. although
some new compilation techniques might be needed. The barrier for compiler pr)of is the
same as for other large, well-understood systems, namely, that the knowledge about these
systems has never been organized and stated sufficiently formally that proofs can start
right off. Instead, there must be a lengthy period of identification of and development of
notation for fundamental concepts, organization of operations, splitting up repr(sentation
from abstraction, separation of optimization from fundamental operations, etc. -11 leading
to the development of formal specifications and bases for proofs. Proofs cai proceed
along with these developments, even drive them, but a satisfactory proof wil only be
achieved after the underlying programming knowledge has been elicited, orgar ized, and
formalized. Historically speaking, this Is the natural final phase of development of

4

scientific knowledge, freezing via formalization. In computer science, this is uiikely to
occur unless forced so by formal specification and verification; it requires a lo of work
and seems to be a long sidetrack from the immedia!e goal. But after the initia' effort is
invested in formalizing the concepts, the next efforts need only modify or c :tend the
previous formalizations.

3. Consider the ta.k of proving that the code generated from compiler C, written In
language Lc on machine Tc, for source language S in target language T for program P is
correct. "hat means that there must be semantics for at least both S and T. fks pointed
out by Hanan Simet, the task can be accomplished without Lc or Tc semanfi, s if it is
performed anew for each P. That is, the task is one of proving equivalencc of P as
written in S and translated in T. Equivalence is usually a reasonable proof exercise,
although modern verification systems are not equipped to handle it directly. In' eed, this
is the most effective strategy for microprogram validation. But the more efficient
verification process is, of course, verifying the compiler for all programs. Tc mi!ht not be
any real machine, but instead an abstraction concocted to aid portability. This would
enhance the effectiveness of verification, but, of course, would introduce the exht a step of
verifying the end phase of specializing to individual machines.

More specifically, there are various strategies for proving some high level a;pects of
compilation, for example:

a. Prove that for every statement S, P{S}Q implies
(Compile(P){Compile(S)Compile(Q)); that is, the verification conditions at the source level
imply the verification conditions at the target level. If the compiler has no inter ;tatement
interaction, then knowing what the compiler would generate suffices.

b. Another approach is Target-interpret(Compile G),Data)-
Source-lnterpret(G,Data), for program G and arbitrary Data. While this works is well as
tfie first for simple compilers, it is not clear what happens when code general on is not
straightforward.

c. Compilation can be viewed as a multi-stage transformation proces; from a
representation using source-level constructs to one using target-level c)nstructs.
Another approach is to prove that each transformation in a compiler, whether between
types of representation or within one type of representation, produces an "equivalent"
program. The theory and technology of correctness proving is sufficient to sup:1ort such
a transformational approach to proving the correctness of a compiler, pro'ided the
transformations it induces are well articulated.

4. Is it feasible to prove the correctness of a compiler? Given the above ways of
factoring the task, properties and modules, it seems so. Of course, this asstimes that
semantics of source, intermediate, and target languages will be available and described for
verification purposes. Furthermore, it assumes that the compiler will be constructed using
modern programming methodology in conjunction with the verification technolcgy which
supports it. The main barrier is not just size of the task, which can be fact red, but
formalization of the supporting theory of data structures and compilation algorithms to the
point where verification is meaningful. This gap between understood, but unformalized,
and the ultimate formalization should not be underestimated in its difficulty, 11or In Its
practical value once achieved for furthe? verification and construction of compiler t.

Position Paper on Preramming Rn tor.mment

by Robert Balzer

usc/Isl

My main interest is in providing software tools to aid programmers develop and
mintain software. In the short term much can be gained from exploiting the type of
environment created in INTERLISP by Teitelman, et al. Although this environment has been
specifically designed for LISP, almost all of it is transferable, given a careful system design.
In particular a programming environment should include fully compatible compiler and
interprets a program editor which operates on the structure (not text) of a programq Dwim
facilities; an extensive interactive debugging facility; and a "Programmer's Assistant."

Ovcr the longer term, we should recognize that programming using current
approaches is a comPex mnuaL process performed in people's heads. This process has
been completed, but not debugged, before they ever use computer tools. increased
reliability and productivity can never be achieved while we rely on unanalyzable manual
tcchniqurs for such a complex task. Instead, we must develop methods for g 'adually
evolvin, a program step by step teom a formal specification as complexity, in the form of
optimi',tion, is slowly incorporated. Each step must be automatically recorded as part of
the program documentation and verified to ensure the validity of the implementation. Only
when programs are developed with the aid of such documentation and validation tools via
a scries of small understandable steps will significant progress be made in program
reliability and programmer productivity.

1 hr, followin, abstract is from an ongoing research effort addressing these Issues:

The Dvelopment of abstract operational programs is a major software research
thrust. This proposal investigates how such abstract programs can be effectively and
validly converted into efficient concrete programs. It proposes an approach called
lransformational Implementation (TI) in which equivalence-preserving transformations are
successively applied to the abstract program to effect the optimization. The key to this
approach is that while optimizing transformations are selected by the programmer, the
program is transformed by the computer system. Hence, the programmer designs the
optimization; the machine ensures its validity and transforms the program.

In addition to guaranteeing the validity of the Implementation this approach would
also drastically reduce the time and effort required to implement a system. This would
allow programmers to experiment with alternative implementations to widen their

2

experience base and improve their capacity to design optimization. Furthermore,
nwintenance would be performed at the conceptual level on the abstract programe which
would then bc rcoptimized rather than attempting to modify a complex interconnected
optimi7ed program as is current practice.

1lie purpose of this study is to discover: what facilities are necessary for the TI
approich; whal transformations are required; how are they expressed; what categories do
thcy fall into; how can they be named; whet kinds of applicability criteria are r.tquired;
what processors are required to verify that these criteria are satisfiec'; what
in'.trumentation facilities are required to test a transformation's selection criteria; what
proof techniques are required to validate the transformations; etc. In short, the stidy wIll
provide an experience base for the TI approach from which we can design &Wd Implunsnt a
prototype system.

Informal comments for the
Workshop on Environment & Control of

DoD Common H!;h Order Language
June 20-22, 1978

Stephen D. Crocker
USC/Information Sciences Institute

4676 Admiralty Way
Marina del Rey, CA 90291

These comments are keyed to the statement of purpose of the workshop and
represent my immediate thoughts upon reading the statement. For the most part. they
represent accumulated prejudices I carry around on the general subject of
compiler/language support.

Technology for Validation and Control

The most important step that can be taken in this area is to insist on a rigorous
and formal semantic definition of the language. We all know, of course, that the
techniques for formal semantic specification of a language are not well developed, and
that the few serious attempts have encountered various troubles, but I'm convinced that
the attempt must be made anyway:

1. A formal semantic definition is a prerequisite for formal verification of the
implementation of a compiler. It is only a matter of time before formal
verification techniques will be available. Verification requires a specification and
the specification should be developed with the language, not after.

2. Even if the formal semantic definition is hard to read, a sufficient number of
people will read it and understand it. In particular, compiler writers will
understand it and base their implementations upon such an understanding.

3. It is quite likely that we will learn how to write readable -- even pleasing --
formal semantic definitions. Certainly if readable definitions are available, they
will be the reference of choice for both users and compiler writers alike.

4. Some reference document is required. The reference document must serve as the
basis for arbitration of differences in understanding that will surely arise. Even
if aan English or other informal document were more readable, the formal
document provides a better chance for eliminating ambiguities.

These points address only the relationship between a formal definition and
validation and control. It must be obvious that beyond these benefits, the definition of
the language itself must benefit enormously if a formal definition is completed. I
understand that formal definitions were suggested for phase I but not included for lack
of time. If they are not forthcoming in phase 2, 1 suggest that they become a priority
Item immediately thereafter.

2

I view the formal definition as a trigger. Once it is available, a number of other

steps may be taken:

partly explored, so the most relevant statement to make at this workshop is that

the topic merits continued support.

2. There are many ways to design a compiler. If the formal definition is clearly in
hand, then it is reasonable to examine the design of a compiler to see how the
design relates to the language definition. Even without formal verification
systems, it is quite reasonable to ask for documentation that is
.veriflcation-oriented" that relates the structure of the compiler to the definition
or the language. Such documentation should be accessible to a wide audience. A
large percentage of the bugrs found in a compiler will probably be found by
reading the detailed documentation. (The same remark about the quality of the
implementation as the quality of the definition applies here. The design is likely
to be much better if such documentation is required.)

3. Short of verification, it should be possible to build a "reference compiler" based
solely on the formal semantic definition. The reference compiler should compute
the correct results, but lint contain any optimization for speed or space. When
there is question as to how a specific program (fragment) is to behave, execution
of it as compiled by the reference compiler may be taken as definitive.

In addition to an insistence upon a formal semantics and the several uses it
enables, I recommend that a control office be established for validating compilers and
that the major compiler vendors be querieck for their experience in this area. With
respect to the control office, the Cobol compiler testing operation in the Navy can serve
as a standard model. Its approach is quite ad hoc, of course, but it serves as a
mechanism for combining the collective wisdom of the user and Implementation
community.

Software Tools

Hooray! It is not yet commonplace for compiler writers to consider whether any
tools should be supplied with the compiler. We must hope that the intentions of the
sponsors are serious and that useful tools will indeed be built to complement the
comp~ilers. I do not have detailed data available, but I would not be surprised to
discover that the lack of use of some of the prior DoD languages has stemmed from the
poor quality or unavailability of adequate compilers and support tools.

There are two fairly standard kinds of support facilities that need to be supplied.
Many others can be thought of, but I want to focus on two in particular.

First, the projects of greatest concern are the large projects. I don't need a
quantitative measure to describe "large"; large projects are simply the ones that stress
our technical and organizational capabilities. Large projects get in 'the most trouble
and, of the projects that get in trouble, the large ones cause the most damage. While
technical issues are often at the root of the troubles, I believe that organizational Issues

3

are far more prevalent. Any kind of support we can provide for the organizational
aspects of large projects is going to pay off handsomely. Among the obvious things we
can do is provide flexible catalog and version control systems, document preparation
and control systems for documentation, cross-referencing of documents with source and
object code, etc. None of these ideas is new, but none is in use everywhere. One of the
primary reasons these tools are not widely used is that most groups depend upon
self-hosted compilers and support systems. This is a large mistake, 1 believe. The
apparent saving in using a "free" machine is costly in productivity, ambition of effort
and reliability.

Several systems built in the last few years attempt to provide support for groups
of users building large systemns. Many of these are proprietary systems used wholly
within large companies. Again I suggest that input from vendors will be useful.
Outside of the unpublicized systems, two systems have been documented in the
literature. The Programmer's Workbench has been produced at Bell Labs and the
National Software Works is under development with DoD funding. The NSW is
particularly lntercsting because it combines the idea of supporting a set of programmers
with a rich set of tools with the idea of using a national network for access to these
tools. As I mentioned before, the organizational aspects of large project frequently
dominate. These effects are magnified when the group is distributed across the country
or around the world, as is common for DoD. The primary set of programmers may be
grouped at one site, but the sponsor is somewhere else, the user in another place, the
monitoring agency in yet another, and so on. Lack of close technical communication
among these players has resulted in near total scrapping of some systems after they were
delivered.

Even without the problem of coordinating dispersed groups, it is not uncommon
to find that compromises are made in the design or development of a system for lack of
access to existing but unavailable tools. For the kind of systems to be built with
DOD-I -- computer systems embedded within larger systems -- the pressure to use the
smallest configuration possible in the final product will almost guarantee that the
self-hosted facilities will be less than the best. I believe that all aspects of design,
implementation, documentation and testing should be carried out on equipment that is
chosen for- that purpose, and that the use of the product hardware be restricted to final
testing. Sure, the cost will be higher -- on the surface. In fact, the actual costs will
drop dramatically.

The NSW should provide uniform access to the best tools. Whether it will work
out as well as intended is yet to be determined. But however the NSW fares, the basic
lesson is that a separate and substantial support facility populated with the best
available tools will materially improve the productivity and reliability of DoD systems.
Without such suppoit, promulgation of a new language is useless.

I have addressed the issue of access to tools. I now want to talk about a
particular class of tools to support the individual programmer. We have known for a
long time how to support a programmer while he tests and debugs his program, but we
seldom supply the right tools. What are the "right" tools? The right tools are (at least)
the ones found in Interlisp. Interactive execution. Tracing and breakpoint facilities
without modification of the source code. Execution of mixed levels of compilation,
Including interpreted source code, individually compiled modules and block compled
modules. Editing of programs within the execution environment, thus eliminating

4

patching or expensive restart after editing. Extensive error checking and controlled
error correction. Flexible interacive controls for running and rerunning program
segments or for undoing the effec.s of a program. Measurements of time and space
usage. Automatic formatting of program text to help detect syntactic errors and to
eliminate concern with such details. (Also provides a standard format for all to use;
promotes readability of code by others.]

Media of Communication

Another great question! The promulgation of a new language is always an uphill
battle. Ceriainly one of the mos" serious problems is how to train people in the
language. In the short run, almos everything will be required: short courses, textbooks,
seminars at confcrences. classes at DODCI and similar facilities, etc. In the long run, I
think it will be possible to get the language taught In schools as a matter of course.
The key will be in the governmen:'s attitude. In my view, it is entirely appropriate for
the government to sponsor the widest possible use of DOD-I. While the language is
designed and justified on the basis of embedded computer systems, it is definitely
reasonable to use it for a wide variety of other applications. To the extent that students
learn and use the language in the course of their studies at school, the government will
benefit directly in the quality and quantity of programmers available.

Textbooks aimed at the general student population should be written. Use of
DOD-I in colleges and universities should be encouraged. Here the key will be
availability of compilers for machines on campus. The usual large machines -- 360s,
370s, 6600s, I 108s, etc. -- and the usual small machines -- I Is, Novas, etc. -- should
all have compilers for DOD-I. The microcomputer market should also be addressed.
DOD-I systems that run on 80S0 microcomputers or their equivalent will be used
enthusiastically find rapid use by students and hobbyists. Active support or
participation in the development of compilers for these machines should be encouraged.

Lest these suggestions sound too activist, I would never suggest that that
government take any steps to actively discourage the use of other languages within the
academic or commercial communities. Any such step would be met with the strongest
resistance and eliminate any chance of substantial support for the language outside the
DoD community. As a related foo:note, widespread use of the language is more likely if
the name Is not "DOD-1".

file: dod-remarks

DEPARTMENT OF THE AIR FORCE
AIR FORCE AMAMENT LAORATORY (APSO)

IOLNO AIR POtCE 6Ae. VLORIDA 325 0
STANDARD RETARGETING CMPILER

FOR TACTICAL WEAPONS

1. Term Definition:

COMPILER: A computer program which produces a machine language
object program from a H-igh Order Language (HOL) source program.

CROSS-COMPILER: A compiler which resides in a HOST computer and
outputs executable machine code for a different (TARGET) computer.

MODULAR COMPILER: A software implementation of a High Order Language
(HOL) which is separated into basic modules. This paper considers the
front end and the back end (code generator) as the only modules.

RETARGETING CCI4PILER: A MOWIJLAR CROSS-COMPILER which has one or
more optional code generators which allow the compiler to reside in one
HOST computer but produce executable machine code for many other target
computers.

2. Background:

a. Digital systems are rapidly replacing analog equipment systems
in modern tactical weapons. New digital hardware technology has made
the size and cost of digital systems practical for tasks deemed impractical
a few years ago; however, software technology for the small coqmuters
used in digital weapons has lagged far behind hardware development.

b. A new generation of lligh Order Languages (HOLs) has given
weapon software designers the tools required to produce efficient
computer programs while deriving the many benefits of programing in an
HOL. The best of these lOLs are implemented in modular, retargeting
compilers which encourage standardization and flexibility.

3. Requirements:

a. The Air Force Armament Laboratory (AFA'1L) has a need for a

standard High Order Language (HOL) to be used in the implementation of
real-time digital systems in tactical weapons. This includes midcourse
and terminal navigation and guidance, digital autopilots, digital fuzing,and digital stores management.

b. The HOL must meet the following requirements:

(1) It must be one of the languages chosen as an Air Force
approved HOL in accordance with AFSC Sup 1 to AFR 800-14.

(2) It must have constructs such as IF-IhEN-ELSE conditional
jumps, WHILE loops, variable declarations, and other such state of the
art capabilities which support structured programing.

(3) It must be well suited to the real-time applications required
in AFATL.

c. The compiler implementation of the HOL must meet the following
requirements:

(1) It must be modular to allow the economic retargeting to new
computers by replacing the code generator in an existing compiler.

(2) It must use a high level intermediate language such as QUAD
language as the primary communication between the front end and the code
generator.

(3) It must have a thoroughly documented interface between the
front end and the code generator to simplify the task of writing code
generators.

(4) It must employ syntax optimization in the front end and
target machine optimization in the code generator to assure maximum
efficiency overall.

(5) It must have the capability to output from one host computer
to any of several target computers to end the present requirement of
purchasing a software development station for each new imbedded type
computer. This capability will'also end the requirement to redo a
software package each time a system mst be moved to a new computer.

(6) The compiler must be hosted on a computer that is accessible
remotely via a dial up telephone network.

(7) The compiler must be owned and controlled by the goverument
and therefore not subject to license fees or uncontrolled modifications.

!2

4. Approach:

a. Implement a JOV~IAL J73 retargeting compiler which will meet the
above requirements.

b. Study intermediate languages, concentrating on the following
characteristics:

(1) Front end versus back end optimization.

(2) Ability to expand to accommnodate new technology.

(3) The ability of the language to translate easily into the
machine languages of computers with varying architectures.

c. Represent the interests of the digital weapon technology in the
definition and implementation of the DOD commn language.

5. Impact: This program will enable AFATL to develop JO7VIAL J73 into a
standard HOL for tactical weapon software. It will enable the Lab to
remain abreast of any new developments in comqputer software technology,
and it will give the Lab direct input to the DOD conutn language. This
comprehensive program will put AFATL to the forefront in software
technology and will maintain that position in the future.

3

What Will the Impacts

a Common High Order Programming Language Be?

Rob Kling and Walter Seacchi

Department of Information and Computer Science
University of California, Irvine

Irvine Ca. 92717

June 20, 1978

A common high order defense language has been proposed to help
diminish the Babel of programming languages now used for embedded
applications and to help diminish the maintenance costs of software
projects [Fisher, 1978]. Despite these ends, it is not clear what
such a language might accomplish without a careful specification of
the "problems" which it is to solve. This paper and a companion piece
raise a number of issues that trouble us in reading and discussion
about the environment in which DoD-i is to be used and the problems to
which it is a solution [Scacchi and Kling, 1978].

It is commonplace to observe that most programming is undertaken
within specialized groups. These specialists produce software
products for yet other programmers or computer users. Despite this
mundane observation, programming language development is largely
treated as a technical problem with a traditional engineering
sensibility. Typically, a skilled language designer tries to abstract
a set of language specifications which will improve some aspect of
programming or program use (e.g., efficient compilation, variety of
data types, simple algorithmic representations) and to synthesize a
suitable language to provide them. Thus viewed, a new programming
language is another "tool" which competes in a marketplace with
existing languages for attention and use. While most language
designers hope that their products will meet with widespread
acceptance, casual attention is given to some language features which
should make the product technically superior, and "marketing" is
delayed until a suitable product is in hand.

Despite the technical advances in programming during the late
60's and early 70's, many problems of program construction, testing,
and use have remained relatively unresolved (e.g., program validation,
insuring high quality and accurate documentaion). One attractive
strategy has been to increase the versatility of programming tools
(e.g., with editors and debugging aids). Programming tools are
claimed to be useful for developing of higher quality software. Many
programmers prefer enriched programming environments. There is even
some anecdotal evidence that they help speed the development of high
quality software. But there is no systematic quantitative evidence
that these enriched environments really pay off. And there is also
some evidence that enriched environments can work against a programmer
[Palme, 1978). This phenomenon is rarely examined and poorly
understood.

Most software designs are based on the belief that if one
develops the technology "on its own terms," superior and usable
products will result. According to this view, careful attention need
not be paid to the so..ial settings in which a given technology will be
used. Such beliefs, when casually applied, lead to poor system
implementations that do not have their intended effects, or which have
unpleasant or unexpected social side effects. We believe this view is
based on serious misunderstandings of the role of technologies in
organizations. This paper sketches this argument in brief. Examples
from programmning and the DoD-1 development project are expanded in
companion papers [Kling and Scacchi, 79; Scacchi and Kling, 78).

If one backs away from computing (for a moment) and looks at a
wide array of technologies used in different social settings, one
finds some interesting cases in which tools "developed on their own
terms" had unexpected, negative effects when they were introduced in a
given social setting:

1. In the late 60's GM built a new Vega plant in Lordstown, Ohio.
During the previous decades, increasing automation on assembly
lines had led to lower unit costs for cars, and GM's plant
designers went all out to make Lordstown the most automated plant
in the automobile industry. GM engineers claimed that the
assembly line was "the fastest in the world." Technologists and
economists could comfortably predict that the unit costs for
Vegas would be lower at Lordstown than at more conventionally
designed plants.

Oddly, workers at Lordstown found the pace of assembly too
demanding and the associated rigid working conditions
intolerable. Absenteeism and turnover were high. Cars were
sabotaged by means such as placing loose bolts in the rocker
panels. The Lordstown designers neglected the extent to which
auto workers valued some control over the pace and conditions of
their work [Rothschild, 1974).

2. "From the Phillipines to the Barbados, new mothers have been
shunning breast feeding in favor of powdered formulas, even
though they have no clean water for mixing them, no fuel to boil
bottles and nipples, and no sanitary storage facilities. The
babies do not get nourishment and immunities of their mothers
milk, and the unsterilized and often diluted formula exacerbates
the malnutrition and diarrhea that are chronic in the Third
World."

"Some mothers reportedly stretch a four-day supply to four
weeks. Others have substituted corn starch or cocoa for the
formula, and one Nigerian woman used plain water in the belief
that it was the bottle and the nipple that provided the
nourishment" [Toth, 1978].

3. In the mid-60's, HEW funded a major municipality, Riverville, to
build an automated information system (UMIS) to help "integrate
services" between the 170 different welfare agencies providing
services to its citizens and to increase the effciency with which
services were provided. Careful studies a decade later showed
that UMIS was in place and is used routinely for recording the
transactions between some agencies in Riverville and their
clientelle. However, the UMIS did not help integrate the
operations of any agencies and in not used to increase
administrative effciency. Rather, the reports are used to help
generate more Federzl funding since HEW auditors believe that an
agency with such extensive automation must be well managed, and
that computerized data is more credible than manually aggregated
data [Kling, 1978b].

The crux of these examples is that the "solutions" were defined to fit

narrow conceptions (or specifications) of the problems experienced by
the technology users. In each case, the technical fix required more
than simply "sticking" some technology in place. Various morals can
be drawn from these examples. One can bemoan the decreasing industry
of American workers or the intransigent featherbedding of public
administrators. And one can hope that some mix of "education" and
character reform will finally do the trick.

A more constructive approach views these examples from the
vantage point of the people who were using each technology and notices
the rationality of their actions. More deeply, technologies are used
by people who are living and working in some social system which helps
define the demands they face, their opportunities, and their beliefs
about efficacious actions. Thus, the way a technology is actually
used and its effects are very sensitive to the social setting in which
it is used [Kling 1978a, 1978b]. It is true of tractors, baby's
formulas, UMIS, structured programming, PL/1, FORTRAN, and DoD-1.

There are clear lessons from these examples for the DoD-1
development. In each of the examples cited above, the "problem" to be
solved was defined in terms that were relatively insensitive to the
social setting in which the technology would be used. Thus,"lower
unit costs" and "increased services integration" were stripped out of
their social context, converted into interesting, but underspecified
technical problems, and then "solved" with pro4cucts whose
characteristics did not help solve the "real" problems. Tr.e technical
fixes* did not create the desired social engineering because so little
in the problem specification said much about the social setting. In
fact, emphasis upon "the tool" tends to deflect attention from the
characteristics of a social setting which may strongly influence the
tool's use. And if using a tool introduces externalities (i.e., costs
borne by people who do not receive the benefits of tool use) , the tool
metaphor does not help us understand them very well. Externalities
are simply treated as a new constraint which an altered tool will
meet, or a problem which another tool will help solve.

Alternative approaches are possible. Volvo, for example, decided
to reorganize the work setting of automobile fabrication from single
assembly lines to with static workers to work groups that ''follow" a
car through the stages of production. In the Volvo setting, it
appears that workers are a little less efficient, but morale is
higher, absenteeism and turnover are much lower, sabotage is not an
issue, and the overall economies appear beneficial.

* Technical fixes are attractive because they enable one to focus on
designing technologies which can be high spirited fun rather than upon
the human dilemmas which can be woefully depressing. It's more fun to
build a real-time information system that tracks lots of records than
it is to study the routine demands of administrators in public
agencies. It's fun to build powerful things that go fast, pull large
loads, streak information from here to there, and it's consistent with
our engineering skills. We shouldn't confuse our predilections for
building such tools with solving anybody's real problems [Daedelus,
1977]. People who respond only to technical requirements can be
stimulated to generate technical fixes EDijkstra, 1978; Shaw,
Hilfinger and Wulf, 1978]. A robust description of both the social
and technological environments taken seriously would discourage
technical fixes that may not work.

These approaches which pay attention to the context of tool use
are not merely examples of "human factors" retrofitted onto a common
technical core [Papenek and Hennessey, 1977) any more than making a
graduate text on quantum electronics accessible to a lay public means
simply designing a new cover and writing a new preface. M ost of the
interesting examples of "socio..technical" designs are now being
carried out in industrial factories [O'Toole, 19741 or Third World
countries (Papenek, 19733. We have relatively few examples in
computing, and little understanding about what is involved.

Let's again return to the case of software development. Certain
commonplace "facts" should be underlined to illustrate the potency of
social elements in software design:

1. JOVIAL, CMS-2, SPL-1, and TACPOL are dominant high-order
programming languages used for developing embedded systems
applications. Regardless how much one may prefer APL, PASCAL, or
an extensible language, new languages that are technically
preferable have not been accepted rapidly by industry programmers
or their managers.

2. When a new software system is introduced, users profit from
tutorial manuals to learn what the software system is good for
and how to use it. Reference manuals are useful to learn or
remember special features of a system. Those people who must
maintain the system can use a good system design document. But,
it is rare for a software application to have up-to-date,
high-qual-ity documents of all three kinds. One may attribute the
common poor state of documentation to the absence of automated
aids. But it also the case that preparing and updating suitable
documentation is a kind of dirty work which many programmers and
analysts prefer to avoid and for which there are few reward~s in
the computing world.

3. The extent to which programs are systematically tested before
being placed into use varies considerably in the computing world.
In fact,"testing" for some groups entails putting a program into
a production setting, and then fixing bugs as they occur. Is it
likely that system testing styles depend upon the organizational
demands placed upon programmers rather than with their
personality, IQ, or other individual characteristics of the
programmers?

We have learned a great deal from empirical studies of program
development. When Dcn Knuth rifled garbage cans at Stanford for
FORTRAN listings, and carefully examined the kinds of statements and
arithmetic expressions they contained, many were surprised by his
findings. Similarly, when Barry Boehm and others studied the life
cycle costs of software and found that maintenance dominated coding,
software engineers took note FLBoehm, 1972). However, these studies
are simple "peeks" into the world of software development. They help
identify problem areas, or shift attention from one problem to
another. But they only begin to explain why certain patterns recur.
Thus, we know that 50%-90% of a program's life cycle costs can be from

maintenance, but we don't know much about the conditions under which
maintenance is performed and how that alters costs. Current
conventional wisdom is that well-structured code is easier to read and
understand than "spaghetti coding," and thus that coding during
development can influence the costs of maintenance.

It is, however, remarkably difficult to find good data about how
programmers "doing maintenance" spend their time (and thus money).
For example, how much maintenance time is simply spent deciding what
changes should be made in negotiation with users? How much time is
spent deciding where a program must be altered? If coding costs
occupy a small fraction of development costs, why would one assume
that they occupy a large fraction of maintenance time? It may be, for
example, that maintenance costs are also high because:

1. Software design and implementation documents are of poor quality
or are not kept up-to-date. Thus, programmers spend inordinate
amounts of time figuring out how a piece of code works.

2. Maintenance programmers are frequently rotated. Soon after a
person learns a system, he moves to another project.

3. Bugs are sometimes introduced by programmers who to make work for
themselves (or others). Some cases of this have been reported.

Alternative explanations like these may best be resolved through
careful empirical studies of programming practice. After all,
different patterns lead to different understandings about "what the
software maintenance problem is" and how it may be most efficaciously
resolved. Good data about the what goes on during "maintenance" and
where time and costs go would be invaluable.

One looks in vain for such understandings contained within the
DoD-I documents [DoD, 1978; Fisher, 1978]. The primary "problem
definition" seems to emphasize:

1. Embedded applications have been written in over 450 different
programming language dialects and maintenance costs are
compounded by the difficulty of finding skilled programmers for a
given language.

2. maintenance costs may e decreased during program development by
providing helpful software tools.

In addition, certain "ill effects" of the current situation are
identified (such as excessive dependence on certain vendors and
diversion from important tasks), but are explained almost exclusively
in technical terms. In contrast, potential problems caused by the
introduction of DoD-I are either ignored, or implied to be easily
solvable through unspecified forms of management control.

Some of these difficulties may, however, defy simple solution.
Vendors, for example, have a tremendous stake in hooking clients into
effectively exclusive contracts. Using special dialects is but one
strategy. Custom-tailoring software is another [Kling and Gerson,

1977]. Without careful analysis, "solutions" like DoD-i may provide
vendors with new opportunities to hook DoD into exclusive contracts.
More seriously, programming is undertaken in work settings in which
people are focussed not only on the logical task at hand, but also in
doing interesting or low stress work, in maintaining career mobility,
etc. These work contingencies lead to styles of software development
which can be-troublesome for end users. Such arrangements cannot be
assumed to have benign effects without prior understandings of the
organizational settings where system development

takes place [Kling

and Scacchi, 1978,1979].

We believe that accounts such as these are likely to lead to a
DoD-I design which is as misfit as large tractors in Pakistan or UMIS
in Riverville. Clearer understandings of the work settings in which
DoD-I will be used to develop embedded systems applications are
essential to help further specify the design of DoD-I features,
particularly the software tools that should accompany it. Simple
assumptions about the environments of use (e.g., that they are like
the advanced laboratories of DoD-I developers) will probably lead to
yet another clumsy language and no overall savings. We refer the
reader to our companion papers for examples which examine programming
language use in greater detail [Kling and Scacchi, 1979; Scacchi and
Kling, 1978].

References

1. Boehm, Barry W., "Software and Its Impact: A Quantitative
Assessment", Datamation, 19 (5):4 8-5 9 , May 1973.

2. Boehm, B., McClean, R.K., Vefrig, D.B., "Some Experience with
Automated Aids to the Design of Large-Scale Reliable Software",
IEEE Transactions on Software Engineering, Vol. SE-I, No. 1,
March, 1975.

3. Daedelus of the New Scientist. "Pure Technology" in Technology
and Man's Future A. Teich (ed.) New York: St. Martin's Press
2nd. ed. 1977.

4. Department of Defense "Common Language Environment Requirements"
(Pebbleman) HOLWG, May 15, 1978.

5. Dijkstra, E.W., "DoD-I: The Summing Up," SIGPLAN Notices, Vol.
13(7): 21-26, (1978)

6. Fisher, David "DoD's Common Programming Language Effort" Computer
11(3)(March):24-33, 1978.

7. Kling, Rob "Information Systems in Public Policy Making:
Computer Technology and Organizational Arrangements"
Telecommunications Policy, 2(1)(March 1978):22-32

S. Kling, Rob "Automated Welfare Client-tracking and Service Integration:
The Political Economy of Computing! (to appear) Communications of the
ACM 21(S) (June, 197P)

9. Kling, Rob anI Flihu Cerson "The Social Dynamics of Technical
Innovation in the Computing Wo rld'" Sym bo l ic Inter ac ti-on.
1(l)(Fall):132-146, 1977.

10. Kling, R , and W. Scacchi "The Social Character of Instrumental
Computer Use" Technical Report 1110 Department of Inofrmation and
Computer Science University of California, Irvine, Irvine, Ca., 1978.

11. Kling, R and W. Scacchi; "The DoD Common High Order Programming
Language Effort (DoD-I): What Will the Impacts Be?" SIGPLAN Notices,
(Feb., 1979)

12. O'Toole, James Work in America Cambridge, Mass: MIT Press 1974.

13. Palme, Jacob "How I Fought with Hardware and Software and Succeeded"
Software Practice and Experience 8(1) (Jan.-Feb.):77-83, 1978.

14. Papanek, Victor Design for the Real World New York: Bantam Books,
1973.

15. Papenek, Victor and James Hennessey Why Things Don't Work Pantheon
Books, New York 1977.

16. Rothschild, Emma Paradise Lost: The Decline of the Auto-Inelustrial
Age New York:Vintage -- ooksT,-T--74.--

17. Scacchi, W. and Kling, R. "DoD's Common Proqramming Language Effort:
The Work Environments of Embedded System Development" Position paper,
Irvine Workshop on the Environment for DoD's Common Programming
Language, University of Calif , Irvine (10 June 1978)

18. Shaw M., P Hilfinger and W A. Wulf, "TARTAN - Language Design
for the Ironman Requirement: Reference Manual; Notes and Examples,"
SIGPLAN Notices Vol. 13(9), pp 36-75 (1978).

19. Toth, Robert "Fitting Technology to Need Held Critical in Third
World," Los Angeles Times (June 18, 1978), Section 1, pp. 1-32.

DoD's Common Programming Language Effort:
The Work Environments of Embedded System Development

Walter Scacchi and Rob Kling

Dept. fo Information and Computer Science

University of California, Irvine
Irvine, California 92717

In this paper, we will briefly discuss the social features of
programming environments. The discussion takes place in the context
of the effort to develop a common programming language (DoD-1) for use
in embedded systems. We illustrate why language designers must
carefully understand the interplay between the social and technical
arrangements of software systems in the organizational settings where
they are developed, implemented, and maintained. We emphasize
patterns of software development that can occur in projects using
DoD-1 to implement other applications rather than focussing on the
implementation of DoD-i itself.

Is "Random" Social Process Rational?

Many computing problems (such as how to reduce the cost of
software maintenance for embedded systems) are commonly viewed as
technically separable from their embedded social environment.
Consider the following excerpt from the keynote address at khe recent
International Software Engineering Conference [Hoare, 1978]:

What is wrong with these products is not the skill with
which they are put together - that one can only admire! It
is just the grotesque inadequacy of the original designs,
which have emerged y an. pparently random hi-storical and
political process, and pay not the slightest regard to the
most elementary concern for matching technique to objective
and objective to technique, for minimising cost and
maximising benefit, in short for serving the use and
convenience of man. (emphasis added)

While the accuracy of this perception of system quality is suitable,
it is an inaccurate diagnosis of the problem. This diagnosis -- that
designs emerge from random social processes -- shifts attention away
from the intrinsic social interactions that take place in any system
development effort. By underestimating the importance of the social
processes that shape system development projects, we increase the
possibility for prescribing unsuitable solutions.

From experience and limited observation of software system
development projects, lie know that determination of objectives,
selection of techniques, the criteria used to assess and assign costs
and benefits, are all interactive products of both formal and informal
interpersonal (social) processes. While their actual sequencing may
be complex and difficult to track, the interacting participants
believe their actions are often quite rational, not random. The
actions available to the participants are rational in terms of the

the subject of the paper is whether software engineering is in fact
an engineering discipline. Software engineering products are being
contrasted to products of the other "traditional" engineering
04sciplines.

the author's examples include 1. .. .ships that will hardly stay
afloat, planes that will hardly fly, schools that act as solar heat
traps, and roads which cause traffic congestion." It is worth noting
that these are all respectively embedded systems of one flavor or
another.

demands and opportunities constraining them.

Organizational politics have their own rationality. In a recent
study of computer acquisition and development decisions made in a
large corporation, Pettigrew [1973] found that staff members who had
the best "access" (e.g. trust of) higher level decision-makers, who
could approve major computing decisions, had their way. When
alternative technical strategies were all risky, members of the board
of directors were likely to select the proposals of staff they knew
and trusted. The actual technical merit of their proposals was not at
issue. Sometimes their proposals were technically superior to
alternatives posed by others, sometimes they were not.

These observations suggest that many social interactions which
occur in computing settings (such as deciding which programming
language to use) have a "local rationality." Such rationalities may
not be apparent in (assumed) global perceptions of common computing
environments. Moreover, hoping to change the calculus of local
rationality by providing new tools depends as much upon knowledge of
the constraints faced by the tool users as it does of the features of
the tools.

The Software Fable

Current software tools (such as text editors, programming
languages, and test data generators) have not been empirically or
systematically demonstrated to reduce the cost of computing. Rather
they have reduced the cost of access to and control over computation
and computing system components (i.e., hardware and software). Many
"myths" and sympathies exist which suggest that such software tools
will reduce the cost of software development, use, and maintenance.
But until empirical investigations are undertaken, the cost-reducing
effectiveness of such tools remains an open research question, not a
reliable fact.

Are Computing Resources Renewable?

Computing resources (such as CPU cycles) are often treated as
renewable and extendable -- not scarce. This reinforces the emphasis
on development. Maintenance, on the other hand, may be viewed as
being oriented toward a conserving or nonrenewable resource
perspective. Reductions in the cost of raw computing hardware act as
an incentive to use more of the available raw resource because it is
renewable. The preferred career and work contingencies for computing
specialists to pursue are those directed toward system development.
In addition, system development is usually defined by specialists as
"creative" or "challenging" work. All this seems to exacerbate
software maintenance since it provides incentives for more code to be
developed that then must be maintained. Hence, software system
life-cycle costs will continue to. §piral upward.

Can New Computing Resources Satisfy Existing Demands?

The rate of demand for computational resources to support
software systems outstrips the rates of availability of computing
resources in most if not all computing environments. That is, as the
cost of access to computational resources appears reduced through the
availability of new tools and devices, the number of users increases,
the number of new applications increase, and older systems are found
to be increasingly procrustean. As system developers and users
acquire greater skills and expertise vis-a-vis a system and computing,
they often come to expect more from existing systems and from
computing in general. These demands arise through experiences with
computing and interaction among the particpants in a setting.

Common organizational strategies for meeting increasing demands
for computing rely on incremental adoption of additional or new
resources. The availability of these resources, as noted above, is

continually met with greater demands for more computing support.
However, we note the time frame in which this occurs depends upon the
dynamics of the particular computing setting. Thus, we should not be
surprised to see that new technological innovations (e.g., faster,
smaller hardware packages) continue to shrink the relative percentage
of total computing system life-cycle cost reducible with such "fixes."

The Social Environment of Software Maintenance Work

Currently, we see a pervajive emphasis on software development
over software maintenance. Most of the research in software
engineering (e.g., improving software reliability) is addressed to the
development of new systems. The problem is that the effectiveness of
logistical support and the timely operation of any embedded system
critically depend on maintenance. The "attractive" assumption on
which current software practices are based is that good development
practices can significantly reduce maintenance costs. However,
empirical research on the technical and social arrangements for
software system maintenance is scarce.

Many computing specialists and programmers share a perspective in
their definition of what work they prefer. To many specialists,
development means design, build, test, document, and turn over to the
user. The problem is that most of the work in programming is
maintaining existing sometimes archaic software systems. However,
maintenance entails on-going interaction with users, fellow
programmers, managers, other people in the work environment, and the
contracting (or supporting) organization. Current system life-cycle
costs reflect the high cost of maintenance -- up to 90% of the total
life-cycle cost of embedded systems [Fisher,78]. But typically, the
Cost figures do not reflect or distinguish costs between people's
time, skills, budget, and inclination. However, we suspect these
social resources are utilized in the interactions and negotiations

Maintenance is often construed to be routine, non-stimulating work.
Development on the other hand is said to be challenging and rewarding.

that transpire in determining what maintenance coding and
documentation update work is to be performed.

A significant portion of research in software development is
directed at developing tools to automate as much of the development
process as possible. What happens if tools can be built which
successfully automate much of these tasks? The concern here is for
the potential conflicts that can surface when the automated or
"routinized" production of software competes (on a cost basis) with
the highly desired programmer task of software production. This
scenario when pursued suggests that relatively fewer software
programmers are involved in the automated production of software in
contrast to the ever-growing armies of software maintainers [DeRoze
and Nyman, 1978]. Thus we may see programmers resisting innovations
in software development technology they perceive as a threat to their
"bread and butter" work.

The Social Setting of Software Documentation

Adequate and up-to-date software documentation is continually a
weak feature of most software systems. Poor documentation is not
usually a result of software development practices. Rather, it is
related to the software maintenance problem. Reasons for poor
documentation are not so much due to the unavailability of suitable
documentation support tools or deficient programmer practices. Rather
updating documentation demands time and attention. Demands for a
programmer's time and attention come from many different, contingent
sources in the work environment. Software documentation upkeep is but
one contingent demand. The notion of contingency is the suitable
descriptor because with it, we can assume that there often exist
conflicting demands for a programmer's time (staying on schedule),
skill, money (keeping project costs from going over budget -- maintain
economic efficiency), other opportunities (developing another new
system or working on a proposal to land a new contract), and
inclination (creative vs. routine work). It may well be reasonable
to assume that a programmer will attempt to pursue a work style that
is oriented toward satisfying those contingent demands which are most
desired or rewarded.

On the Conversion of Existing Embedded Systems

Given the level of investment in software in embedded systems
what "conversions" will likely occur upon the onset of DoD-1? Since
DoD-i is not intended to be used to convert existing systems, we won't
worry about problems here -- yet. We can likewise divert discussion
away from problems of converting or adapting current data sources. We
can however, see that the advent of DoD-1 into the industries and
organizations that build, use, and support embedded systems will have
unclear impacts in their social environments.

We assume that large-scale training programs will be initiated
and implemented for both entering and experienced specialists.
Needless to say, those with the earliest, hence most experience will
find new career options (including greater salary and mobility)
opening for them. Career mobility can act to motivate a programmer
desiring to acquire a position on software development projects -- by
"staying out in front." Situations such as this manifest problems of
retaining familar and experienced programmers.

As these career contingencies become visible to larger numbers of
programmers, they too may well attempt to follow suit. But what about
the existing software systems? Who will maintain them? Who will want
to have or keep the skills necessary to maintain procrustean systems
written in archaic languages? If only development projects are to use
DoD-1, then one way for a programmer to move from software maintenance
work to development is to acquire expertise in DoD-1 thereby enhancing

Fcareer opportunities. We note that with current embedded systems,
personnel turnover is rapid, typically two years.

As expertise with DoD-1 becomes widely disseminated, finding
programmers skilled at maintaining existing embedded systems -

written in one of 450 programming language dialects -- becomes more
difficult, hence more expensive. These direct costs may be attributed
to the social benefits accrued by individual programmers persuing

their career options.

When critical existing embedded systems become too costly or too
unreliable to maintain then a reasonable rationale to follow would be
to redesign and reimplement them. Many very large software systems
consist of source code written years before by programmers no longer
working with the system. Redev'2-loping such systems, however, implies
that the existing systems are comprehensible with respect to their
functions, implementation, and dynamics. Again, the availability of
high-quality, up-to-date system design documentation would greatly
facilitate system redevelopments (especially when the original
developers are not available). Given that the appropriate
documentation is unavailable or unsuitable, the redesign and
reimplementation of an existing system will require greater effort
than the initial system development.

While a new software tool like DoD-i may be intended to be used
only for the development of new systems, social forces within the
current environments can create situations where "development of new
systems" includes "conversion of old systems." Thus the life-cycle
costs of embedded software systems continues to grow.

Computing and the Emergepnce of Problems

As computing continues to grow rapidly as a technology and as it
continues to be applied to new application areas, we see that many
unresolved socio-technical problems still exist. The prime example is
building and maintaining large, reliable software systems. New sets
of social and technical uncertainties continue to arise as computer

use permeates applied computational problem areas. This suggests that
computing, as a social activity, may well be organized toward the
p2roduction of problems in search of manufacturable solutions. As
such, the im~lTied production cycle will not converge: many problems
will never reach complete solutions. This keeps computing alive as an
interesting socio-technical arena but it suggests the cost of
computing will continue to rise.

As Software Costs go up, Computing becomes Political

In the real world of organizations, budgets are finite and
packed. Organizational demands for computing resources compete with
other organizational needs and demands. Such contentions are resolved
by non-random historical and political processes within and between
organizations, their participants and representatives. These
foralnotation, "car-tisting and thelik.iTes activitresoaagitigma
situlnotation rarterize byd policyTes actsitresoavaiingma
be discussed in technical terms or as purely technical matters. But

nonehelssthepolitics of organizational resource distribution will
infuene te sapeof computing arrangements. Thus as the material,

labor, and social costs of computing continue to rise, computing will
become more an object of contention when organizational resources are
being allocated.

Tentative Conclusions

1. Technical and social aspects of the programming work environments
shape software system development, use, and maintenance. As such,
these topics and their related social and technical problems
cannot be treated in isolation from each other. To do so can
result in the development of tools, techniques, or other
"solutions" that don't fit in computing environments and thus fall
into disuse. Such an outcome would itself be costly.

2. When seeking effective means to temper the growing cost of
software systems, it is necessary to consider both technical and
social arrangements of the environments where the systems are
intended to be built or operate.

3. Socio-technical processes affecting the increasing cost of
software include: the nature of software maintenance, the nature
of programming work and documentation upkeep, the organizational
dynamics of the settings where software systems are used, and
nature of converting 'obsolete' systems.

I4. Research and extended discussion on the interplay of social and
technical exigencies in the selection and use of programming
languages is lacking but needed. The success of DoD-1 hinges on
social arrangements of programming environments which may not be
commonplace. Systematic studies which identify the likely
conditions of DoD-i use would provide credible evidence for the

likelihood of it's success.

5. There are no easy or simple solutions at hand. Emphasizing the

technical side of software -- through the creation of new software
tools -- as the means to solve the high cost of software problem
is short-sighted. Social patterns within software development
groups may have as potent an effect on the quality of products
produced as do the software tools used to implement them.
Attending to social processes casually or late may well turn out
to be insufficient.

6. While opportunities to influence the requirements of the DoD-i
programming language are gone, there is still time to consider and
influence the social and technological contours of DoD-I
programming environments.

References

1. De Roze, B.C. and T.H. Nyman, "The Software Life-Cycle - A
Management and Technological Challenge in the Department of
Defense," IEEE Trans. Soft. Engr., Vol. SE-4(4): 309-318,
(July, 197T-)

2. Fisher, D.A.; "DoD's Common Programming Language Effort,"
Computer, 11(3), pp. 24-33, (March, 1978)

3. Hoare, C.A.R.; "Software Engineering: Keynote Address," Proc.
Third Inter. Conf. Soft. Engr., IEEE Press, pp. 1-4, (May
1978

4. Pettigrew, A.M.; The Politics of Organizational Decision-Making,
Tavistock Press, London,ITT 3)-

Assumptions About the
Social and Technical Character

of Production Programming Environments*

Rob Kling and Walt Scacchi

Dept. of Information and Computer Science
University of California, Irvine

Irvine, Calif. 92717

22 June 1978

Based on a session held at the Irvine Workshop on the Environment
Requirements for DoD's Common Programming Language. The discussants
included Robert Anderson, David Fisher, Dennis Kibler, Duncan Morrill,
Patricia Santoni, and the authors.

Background

Throughout the Workshop on the environment for DoD's common
higher order programming language (DoD-I), participants in each
session have often made different assumptions about the production
setting in which the language would be used. In characterizing the
size of programs to be written (.5K lines to 5000K lines), the size of
host machines (32K bytes of memory to 1024K bytes of memory), the
skill of programmers (highly trained in modern programming methods or
high school graduates with 60 days of training), different
participants have made different assumptions. Also, since it is hoped
that DoD-I will help decrease the costs of maintaining software,
different assumptions about what "maintenance" entails, why it is so
expensive, and how software tools can cut the costs are critical.
Usually, Workshop participants have not made their assumptions
explicit. Nor is there an easily accessible document which explicates
a set of assumptions of the social and technological arrangements to
which DoD-I can be designed. We believe that a clear understanding of
the social environments where DoD-I is to be used is extremely
critical in shaping a useful and usable programming language
environment design. Otherwise, it may not fit well in the software
production environments in which they were intended to be used.

Throughout the development of DoD-I, the basic problem to be
considered is (how to reduce) the high cost of software. Though we
now know that the dominant life-cycle cost of software occurs in
software maintenance, what can we attribute these costs to? What is
the public knowledge of software maintenance costs in the research,
academic, industry, and military organizations? If we have no
specific, general, or even weak common understandings of the social
and technical dynamics of software maintenance in different work
environments, how can we expect to develop tools and techniques which
will effectively attack the high cost of software problem?

These questions and others [Kling and Scacchi, 78,79; Scacchi
and Kling, 78] helped set the stage for a Workshop session on the
interplay between the social and technical features of production
programming environments and their dynamics.

Assumptions that Relate DoD-I to Software Maintenance

In discussions about the design of DoD-I, the participants seemed
to differ in five different areas:

1. What does "maintenance" entail? How does it arise? How can
maintenance costs be cut?

2. Current Programming Tasks -- What is the size of the systems that
DoD-I will be used to fabricate? What kinds of applications are
most likely to be developed? What is the role of the host
computer (development machine vs. target machine)?

3. What skills can DoD-1 programmers be expected to have? How
highly motivated will most of them be to learn modern software
development methods, and to carefully document and test the
systems they develop or maintain?

4. To what extent do project management constraints, styles of
management control, or manager's ideology influence the
approaches to software development followed on particular
application projects?

5. How well will DoD-i fit into existing programming environments?
Do the DoD-i developers (and their supporters) expect to use
DoD-i as a means to bring about chahges in current programming
practices (i.e., DoD-i as a "Trojan Horse")?

A programming language development effort like DoD-1 cannot be
expected to produce a language that is "everything for everyone." As
such, many choices and decisions must be made to decide which features
or attributes the resulting language will possess. We see that many
such decisions are influenced by the alternative (real or conjectured)
programming environments one uses for reference.

Our discussion now turns to elaborating what is known about the
current production programming environments.

Production Programming Environments made Explicit

To help establish a context for viewing programming environments,
it was noted that DoD-1 is targeted for:

1. Development of new embedded software systems

2. Development of software tools (e.g., to provide tie-ins for tools
to be made available in common software libraries in a standard
language).

We now make the assumptions about the programming environments
where DoD-i is intended to be used explicitly (i.e., "what it's like
out there in the trenches")*.

Maintenance is considered to be everything that happens to
software after user acceptance. Maintenance can range from "bug
fixes" through the complete redesign and development of a delivered
system. With current embedded systems the people who develop the
systems are often not the same as those who must maintain it.
Software applications for DoD are often developed by industrial
contractors who employ programmers with 2-~4 years of college.
Software maintenance is often performed within DoD installations by
programmers with high school educations and little exposure to modern

a This account was abstracted from discussions with the acknowledged
participants. It is not based on systematic empirical studies of
military and industrial software development environments.

software development methods.

While it is true that software must be alterable, with current
embedded systems, the number of lines of code changed in a system
annually (throughout its 10-25 year life-cycle) is on the order of the
number of lines of code in the system.

Most embedded military software systems are large: between
50,000 and 2,000,000 lines of code. Most computers used in these
applications are relatively obsolete (most software is written for
computers procured as long as 15 years ago). Despite the existence of
military standards that require the use of high-level languages (i.e.,
large fractions of those programs to be written Jn high level source
code) , the use of low-level languages often dominates for cost reasons
("it's too expensive to develop new tools, when project deadlines must
be met within budget"). In fact, it seems that subversion of the
existing high-level standard is claimed to be commonplace. One
explanation is that existing languages (e.g, TACPOL, CMS-2, JOVIAL) do
not have appropriate features for handling parallel computation,
real-time clocks, arbitrary 1/0 devices, interrupts, etc. According
to this line of reasoning, if DoD-1 provides a sufficiently rich array
of features, it will be "naturally" attractive.

Many software production environments only have software tools
that were available 10-15 years ago together with programmers
primarily skilled in assembly language programming. Thus many people.
believe that the introduction of almost any modern software
development tools (e.g., library support, cross-reference aids) could
not help but improve the quality of typical software development
efforts. (Note: The DoD-i specification allows programmers
sufficiently flexible use of GOTO's and assembly code linkage that one
can literally write FORTRAN or assembler in DoD-i.)

The pivotal individuals whose choice of commitment to adopt or
resist the introduction of DoD-i are those in middle management
positions in current software development environments. Staff
retraining costs will largely come from their budgets, but they will
not see the savings of lower software maintenance costs. Thus, under
present funding arrangements, they have little incentive to invest
heavily in adopting modern programming methods as an adjunct to DoD-1
use. Since project funding limitations are real, since production
schedules must (or should) be met, and since programmer (re)training
takes time and money, these managers will decide if adoption of DoD-i
is cost-effective in their situations. It is difficult to predict the
extent to which many middle managers will seriously adopt DoD-i. The
decision to operationally adopt DoD-i is not merely one of choosing a
"better" technology. This choice cannot be mandated unless resource
support is made available.

Large-scale commitment to DoD-i is likely to be evolutionary:
gradual and fiscally tempered. But the repercussions of this
observation for language design, programming environment development,
or training programs are unclear.

salThere is consensus that many applications written in DoD-1 for
saltarget machines will be developed on larger machines and then

cross-compiled. Some even assume that separate machines (e.g., host
and target) will be the dominant mode of DoD-1 use. Use of DoD-1 in
the development and maintenance of new embedded software systems will
require large, resource-sharing computing facilities (i.e., anywhere
from larger minicomputer systems up to the likes of the National
Software Works and the ARPANET). Such facilities may not be available
or accessible under current arrangements to most software development
groups.

Contractors differ substantially in the ease with which their
project staff can gain access to large machines. The best sites have
easy access to a wide array of facilities. But there are many lesser
sites where good access cannot be taken for granted. Such facilities,
though, must be accessible to the average (mediocre) programmer given
his level of skills, available time, inclination, and organizational
commitment of resources (training and computing budget) to ensure use.

Summary and Conclusions

1. Since large applications will be developed with DoD-1, there
should be an early commitment to developing integration aids
(e.g., libraries, cross-referencing packages). These may have to
be developed with external support rather than waiting for
vendors or user groups to develop them in the next decade.

2. It appears that many applications will be developed on a large
host machine and then cross-compiled to a smaller target machine.
This pattern makes sense from the point of view of providing rich
software tool environments for DoD-i , but also makes large
demands for new computational resources. The extent of these
demands and how they will be met is still unclear.

3.It is tempting to take a unified view of minor alterations to
programs by treating "fixes" as a form of redesign. According to
this view, all alterations should be referenced back to the
original specification and treated coherently as redesign through
all levels of documentaion and coding. This view has an
attractive intellectual coherence and may make good practical
sense for programs of 100 lines. But its applicability to
programs of 1K, or 50K, or 5000K lines merits careful
investigation.I

There may be other approaches to program development which make
interesting demands on both programming style and the DoD-i
environment which merit careful scrutiny when applied to massive
programs.

4. DoD-I programmers cannot be expectea to be highly skilled. The
language -- including its software tools and teaching aids --
will have to be targeted towards the "middle" 50%-80% of
programmers in order to be effectively received.

5. There are relatively few incentives for many "middle managers" to
aggressively embrace DoD-I and its associated programming
methodologies.

6. "Evolutionary" utilization of DoD-I may well mean that many DoD-I
programs will not rely upon elegant control structures in the
language. Instead, we may expect to find FORTRAN-like programs
in DoD-I. Systems may well evolve in "mixed' modes. Differing
levels of programming sophistication and culture may appear in
different portions of a given large application.

7. Maintenance is still poorly understood since it seems to cover
everything from bug fixes, through enhancements, to the complete
redesign and redevelopment of systems. There is relatively
little understanding of the programming development environments
in which modern software methods are being used. And there is
little understanding of the differences between those
environments that are rich in resources and highly
professionalized versus those that are less so.

References

1. Kling, R. and W. Scacchi; "What will the Actual Impacts of a
Common Higher Order Programming Language Be?", Position Paper,
Irvine Workshop on the Environment for DoD's Common Programming
Language, University of Calif., Irvine (June 20, 1978)

2. Kling, R. and W. Scacchi; "The DoD Common High Order
Programming Language Effort (DoD-I): What Will the Imapcts Be?"
SIGPLAN Notices, (Feb., 1979)

3. Scacchi, W. and R. Kling; "DoD's Common Programming Language
Effort: The Work Environments of Embedded System Development,"
Position Paper, Irvine Workshop on the Environment for DoD's
Common Programming Language, University of Calif., Irvine (June
20, 1978)

A Practical, Precise, and Complete Standard Definition
for the DOD Common Programming Language

Eldred Nelson
TRW Defense and Space Systems Group

Introduction

As noted in the preliminary Environmental Requirements document

the DOD comon language needs a standard definition specifying the syntax

and semantics of the language and providing a basis for deciding whether

or not compilers conform to the definition. Such a standard definition is

fundamental to achieving the objective of the new common language - a single

progrming language, usable for programming all embedded computer systems,

having programming manuals consistent with compiler implementations, and

having consistent compiler implementations across a wide family of computers.

SEMANOL is a formal language standardization technology, capable of

providing the needed standard definition. It is proven through application

to JOVIAL (3), JOVIAL (J73), UCMS-2, and BASIC. The SEMANOL system is

based on a mathematical theory of semantics, providing a sound basis for

its application. SEHANOL is a syntactic and semantic definition language,

designed to be relatively readable by people and executable by computer,

through a SEHANOL Interpreter. With SDWAOL, a programming language can

be specified precisely and completely - context-free syntax, non-context-

free syntax, input-output semantics, operational semantics, and implementation

dependencies. The detail in a SEMANOL specification can be controlled to a

degree defined by the language control authority, so as to constrain compiler

writers enough to produce uniform implementations but without unduly constrain-

ing their efforts to produce efficient code. Machine dependencies in the

language are specified in a parameterized way, allowing comparison of

semantic effects in different machine environments and permitting machine

dependent semantics to be limited. Because the SEHANOL specification is

executable, test cases can be developed to test the language definition to

a measured effectiveness while minimizing test case redundancy. These test

cases serve to thoroughly debug the language specification and to provide a

test of compiler conformance to the specification. Semi-automated test case

generating tools using SEHANOL are under development.

"--

...a. 1 i~ __ Ii .i

Both of the language design contractors have indicated, in their

preliminary design documentation, plans to prepare an axiomatic formal

specification. A SEMA OL specification will complement the axiomatic

specification, providing the missing non-context-free syntax and semantics

of execution.

A standard definition of the DOD common language, suitable for use

by the Configuration Control Board and Language Support Agency, would

comprise:

9 a formal SEHANOL specification of the language,

* an English reference manual, prepared using the SEMANOL specifica-

tion as a basis for writing accurate and complete descriptions of

language features,

* an axiomatic specification suitable for use in formal verification,

9 a set of test cases, thoroughly exercising the SEMANOL specification,

for validating compiler conformance to the specification.

With such a definition, compilers can be produced implementing the language

uniformly, supporting greatly increased transportability of applicAtion

software and software tools.

In following sections of this paper, the language definition problem

is discussed; the SEMANOL system and its underlying mathematical theory of

semantics are described; application of SEKANOL to the DOD common language

is outlined; how the SEMANOL specification is used to generate test cases

for demonstrating compiler conformance to the specification is described;

the relation of a SEMANOL specification to an axiomatic definition is

discussed; a formal standard definition for the DOD common language is

described; and use of the standard definition to support language control

is discussed.

The Language Definition Problem

Having a standard programing language and reaping thae benefits of the

standardization are dependent on having a standard definition usable in

distinguishing a standard implementation from a variant and in assuring

-2-

that an implementation does indeed meet the standard definition. Standardiza-

tion efforts for COBOL, FORTRAN, and other languages lacking such a standard

defintion have had only a limited success.

Conventional programming language specifications, written primarily in

English prose, are known to be Imprecise and incomplete. They contain

ambiguities and in some cases are internally inconsistent. These deficiencies

create problems for compiler writers and programmers. Lacking a precise

and complete specification, compiler writers must invent a portion of the

language. This invented portion of the language is generally not documented,

so programmers must discover it by trial and error, increasing the cost of

debugging programs.

Recognizing these problems, the IRONMAN 2 general design criterion 1H

specifies that "To the extent that a formal definition assists in achieving

the above goals, the language shall be formally defined." The contractors

for both the red and green languages indicated in their preliminary design

documents they intend to provide an axiomatic formal definition as part of

the detailed design.

The axiomatic formal definition is an important step towards a standard

definition, providing axioms defining data structures, control structures,

and assignment; however, all axiomatic language specifications prepared to

date are incomplete. They generally assume that a context-free-syntax is

defined by some other method, make no effort to deal with non-context-free

syntax, and omit significant execution details and implementation dependencies.

The SEMANOL System

SEMANOL was developed to provide precise and complete specifications

of programing languages, comprehensible to a suitably indoctrinated reader;

i.e., SEMANOL is designed to supply people with a basis for communication

about programing languages more precise and complete than commonly employed

description methods.

SEMANOL is based on a mathematical theory of the semantics of programm-

ing languages 3 , which represents a programing language as a system of 5

components: (P,I,F,T,$).

-3-

P is the set of executable programs in the language. I is the set of input

and output values for these programs. F is the set of computable functions

specified by the programs in P. T is a set of execution traces - ordered

records of semantic actions in executing programs. 0 is a semantic operator

defining how a program in P computes the values of a function in F.

In the semantic theory, a program pEP specifies a computable function

feF on a set E = I. Execution of p with an input EiCE computes the function

value f(Ei)EI. The execution trace tcT defines the semantic actions in

computing f(Ei). The SEHANOL system formal definition of a programming

language L is:

L - {(p,E,f) : FOR ALL EicE(O(p,Ei) - (t,f(Ei))))

i.e., L is the set of triples (p,E,f) such that for all inputs Ei in the

input domain of program p, the semantic operator * applied to p and an

input E icE constructs the function value f(Ei) and the execution trace t.

This definition specifies input-output semantics by associating each program

p with an input domain E and a function f on E. It specifies operational

semantics through the execution trace t, defining how f(Ei) is computed

from p and E.

The semantic operator 0 is a function from PxI to TXF. It specifies

the set P of programs in terms of:

* constants

e variables,

* expressions formable from strings of constants, variables,

defined terms, and quantifiers, and

a restrictions (non-context-free) on the scope of constants,

variables, definitions, and expressions;

it specifies the set I of input and output values; and it specifies the

execution of programs in terms of expression evaluation rules, execution

sequencing rules, and the effect of machine dependencies (in parameterized

form). Thus 0 specifies both the syntax and semantics of L.

Semantic operators for programming languages are constructed as programs

in SEMANOL (SEMANtics Oriented Language), a language developed for that purpose.

Because SEMANOL is a programming language, it, too, has a formal definition in

-4-

terms of a semantic operator. Such a semantic operator for SEMANOL has been

constructed in the form of a SEHANOL Interpreter, operational on the HIS 6180

computer under MULTICS at Rome Air Development Center (RADC), and accessible

via the ARPANET. An informal description of SEMANOL is provided in the

SEMANOL(76) Reference Manual.

The SEMANOL Interpreter4 is constructed in two components: (1) a

SEMANOL Translator which translates a SEMAU|OL specification of a programming

language into an internal form, SIL (SEMANOL Internal Language) and (2) an

EXECUTER which, using the SIL representation of the language specification,

parses programs in the specified programming language, applies non-context-

free tests, interprets SEMANOL operators and constants, produces the correct

output of program execution, and provides a trace of program execution, which

can be selected as a user option. Figure 1 shows how the SEMANOL system

would function, applied to the DOD common programming language (designated

DOD-1 in the diagram).

The SEMANOL Metaprogramming Language

SEMAOL is a "metaprogramming" language specifically designed for

programming semantic operators. Its design stresses readability. It has

high level expressiveness and uses conventional notation where possible.

SEMANOL has evolved as experience in applying it to specifying programming
5 6 . 7 8 _languages - JOVIAL (J3) , JOVIAL (J73) , UCMS-2 , and BASIC - has shown

which expressions and terms are useful and readable. It has a standard

version, SEMANOL(76), defined by a SEMANOL(76) Reference Manual 9, with the

SEMANOL Interpreter providing executable confirmation of interpretation of

SEMANOL expressions. SEMANOL(76) primitives were chosen to have a direct

correspondence with well understood mathematical objects (e.g., #INTEGER)

and operators (e.g., +). The Reference Manual defines many of the high level

expressions in terms of SEMANOL primitives, using SEMANOL.

How SEMANOL is used to specify a programming language may be seen in

terms of the specification prepared for JOVIAL (J3). The SEMANOL program

for the JOVIAL (J3) semantic operator comprises four sections:

o Declarations Section, declaring global variables,

e Context-Free-Syntax Section, defining a context-free-syntax in

terms of a grammar and a Lexical Syntax,

e Control-Commands Section, defining execution of the SEMANOL program,

-5-

Ei: DOD-1 PROGRAM INPUT

p: DOD-1 PROGRAM ------. t: EXECUTION TRACE
(p,Ei): PROGRAM, INPUT F(,): EXECUTION OUTPUT

Pj: SEANOL SPECIFICATION fi: SEMANTIC OPERATOR
" OF DOD-i

SE ANOL INTERPRETER

MULTICS SYSTEM

HIS 6180 i

FIGURE 1: THE SEMANOL SYSTEM

-6-

e Semantic Definitions Section, defining Lexical Analysis, Context-

Sensitive Checks, Control Semantics, Evaluation Units, Evaluation

Semantics, Type Definitions, Semantic Attributes, Selectors,

Implementation Parameters, Auxiliary Definitions, Scoping Contexts,

NamesGeneralized Assignment, Standard Reference Addresses,

Addressing Units, Addressing Unit Addresses, and Relative Addresses.

The Declarations Section declares five global variables used in the

SEMANOL program. Because it is short the entire section is reproduced here:

#DECLARE-GLOBAL:

current-executable-unit,

jovial-system,

ncf-error-is-discovered,

transformed-token-seq,

unscanned-token-seq #.

"#DECLARE-GLOBAL:" is a SEMANOL keyword denoting that the following strings

are global variables. "#." is a SEMANOL symbol denoting the termination of

a SEMANOL statement. Most SEMANOL keywords have the symbol "#" as their

first character. The five global variables declared have the syntax of

SEMANOL names and are constructed from English words suggesting the sets

over which the variables may range.

The Context-Free-Syntax Section defines syntax in a form similar to

BNF notation, as this example shows:

#DF jovial-j3-system

-> <gap><Jovial-j3-program><gap>

<optional-iibrary><optional-compools>

<defaults, #.

#DF jovial-j3-program

-> <optional-control-input><program> .

#DF optional-control-input

W> <#NIL> #U <implementation-control-input><gap> .

-7-

S#DF implementation-control-input

=> < compools'<gap>1:><gap>

<compool-name-list><gap>< '$'> #.

The SEMANOL keyword "#DF" introducing each statement denotes that the state-

ment is a definition statement. In the context of the Context-Free-Syntax

Section, #DF denotes a syntactic definition defining a syntactic class name

for the set of strings specified on the right hand side of the "->" symbol.

Each pair of angle brackets, "<gap>" e.g., denotes a set of strings and

adjacent pairs of angle brackets denote the set of strings formed by

concatenating strings chosen frem each of the two sets. "JNIL" is a SEmANOL

keyword denoting a string of no characters and "#U" is a SEMANOL operator

denoting the union of the sets on its left and right. <'compools'> denotes

a singleton set whose member is the string "compools".

The Control-Commands Section is a high level description of execution

of the SEMAIIOL specification, using syntactic and semantic definitions in

the other sections. Since the text of this section is relatively short it

is reproduced in its entirety:

#CONTROL-COMMANDS:

#ASSIGN-VALUE jovial-system - #CONTEXT-FREE-PARSE-TREE

(textually-transformed (#GIVEN-PROGRAM), "with-respect-to"

<j ovial-j3-syst em>)

#IF ($Jovial-system$) is-not-syntactically-valid

#THEN #COHPUTE # /ERROR

#IF there-are-executable-units-in (main-program-of

(jovial-system)) #THEN

#BEGIN

#ASSIGN-VALUE? current-executable-unit -

first-executab".e-unit-in-program

(main-program-of (jovial-system))

#WHILE ($current-executable-unit$)is-not-terminator #DO

#BEGIN

-8-

#COMPeUTE! computational-effect-of

(current-executable-unit)

#ASSIGN-VALUE! current-executable-unit -

executable-unit-successor-of (current-executable-unit)

#END

#END

#COMPUTE! #STOP #.

This section directs that a context-free parse tree of the JOVIAL program be

constructed, using the context-free-syntax specified in the Context-Free-

Syntax Section. If the program is syntactically valid and contains executable

units, execution begins with the first executable unit in the program and

continues with the executable units successor until a terminator is reached.

These processing steps are articulated more precisely in the control portion

of the Semantic Definitions Section. The "with-respect-to" in the first

statement is a comment inserted to aid reader interpretation of the statement.

After the context-free parse tree is constructed, context-sensitive

checks are applied; e.g., in JOVIAL (J3), a return statement may appear only

in a processing declaration. This is expressed in SEMANOL in terms of semantic

definitions as:

#DF test-if-returns-are-all-in-proc-decl-of(prog)

-> #NIL #IF #FOR-ALL return-stmt #IN

sequence-of-returns-in (prog) #IT-IS-TRUE-THAT

(($return-stmt, "of" prog$) is-in-some-proc-decl);

-> error-message(' RETURN-OCCURS-IN-MAIN-PROGRAM')

#OTHERWISE #.

#DF is-in-some-proc-decl(strat, prog)

-> #THERE-EXISTS proc-decl #IN sequence-of-proc-

decl-in(prog) #SUCH THAT (($stint, "in"

proc-decl $) occurs) #.

* This test provides an error message if a return is found which is not in a

processing declaration.

-9-

An example of control semantics, specifying execution sequencing is:

#DF statement-following(stmt)

-> ((next(stmt, "in" sequence-of-executable-

statements-in(program-unit-containing(stmt))) .

#DF next(stmt, "in" seq)

-> ((#ORDPOSIT nx #IIN seq) +1) #TH-ELEMENT-IN seq CI.

An example of evaluation semantics is:

#DF product-value(unit)

-> integer-product(operand 1-of(unit), "*"

operand 2-of(unit)) #IF type(unit)#EQW 'integer';

-> fixed-product(operand 1-of(unit), "*"

operand 2-of(unit)) #IF type(unit) #EQW 'fixed';

> floating-product(operand l-of(unit), "*"

operand 2-of(unit)) #IF type(unit) #EQW 'floating' 1.

Here "unit" is a multiplication expression whose evaluation semantics depends

upon the type of expression.

Implementation dependencies are expressed in terms of parameters, such

as "bits-per-word", e.g:

#DF implementation-integer-subtract(x,y)

-> ($($x$) converted-to-standard-form - (y)

converted-to-standard-form $)

with-result-converted-to-implementation-form .

This definition defines implementation dependent subtraction of two integers

(y from x) in terms of:

* converting each integer value to a standard form

* subtracting the integer values in the standard form

* converting the result to an implementation form.

The "($"and"$)" denote that the value enclosed by the parentheses is the

argument of the following function.

-10-

$DF with-result-converted-to-implementation-form(sem-const)

"{ ($sem-const$) is-semanol-base-2-integer-constant))"

-> ($ #PREFIX-OF-FIRST '#B2' #IN serf-const $)

conformed-to-implementation-word-size #IF

#FIRST-CHARACTER-I(sem-const) #NEQW '-';

> ($($($word-between('-', "and" '#B2', "in" sem-const)

$) conformed-to-implementation-word-size $)

complemented $) incremented-by-one #OTHERWISE #.

The standard form for an integer value is a SEMANOL base 2 integer constant

of the form <sign><i><'#B2'>. For positive integers, sign is the nil string

and for negative sign is the symbol "-". i denotes a string of l's and O's

with the left hand bit having a value 1 (i.e., zeros are suppressed). "02"

denotes that the string i is to be interpreted as a binary integer.

$DF conformed-to-implementation-word-size(val)

"{val) is-string-of-ones-and-zeros) }"

M> #RIGHT bits-per-word #CHAACTERS-OF(($bits-per-

word $) zeros #CW val) .

Since the value "val" is in standard form with its left zeros suppressed,

conversion to implementation word size involves concatenating ($CW) zeros

on the left of val and selecting the right (bits-per-word) of that string

of ones and zeros.

Application of SEMANOL to the DOD Common Lanaguage

Preparation of the SEMANOL specifications of JOVIAL (J3), JOVIAL (J73),

UCMS-2, and BASIC have shown that it is feasible to prepare a formal specifica-

tion defining the syntax and semantics of real programming languages, and that

such a specification is relativly readable by people and executable on a

computer. In the preparation of each of these formal specifications, a

number of ambiguities and incomplete definitions were identified. The

ambiguities were resolved and the definitions completed, confirming the

now widely accepted notion that preparing a formal specification can aid

language definition and standardization in this manner. However, the

specification development also identified some language definition issues

-11-

important to DOD common language development. The non-context-free syntax

and implementation dependent semantics, neglected in most formal specification

approaches, are major portions of the language specifications.

Although much of the discussion concerning language design, in the

literature and in design documents, considers syntactic issues primarily

in terms of context-free-syntax, the real programming languages used in

most application and system programming contain many non-context-free

restrictions. These restrictions ranges from restrictions on the scope

of variables to restrictions on how various constructs are used in specific

contexts. The general design criterion for reliability of the DOD common

language tends to increase the non-context-free syntax, for many of the

techniques promoting the production of reliable programs involve language

enforced restrictions, defined in non-context-free syntax. SEMIOL

specification of the DOD common language will identify these non-conte.t

free aspects and describe them, so they may be understood and properly

implemented.

In spite of the general design criterion of machine independence, the

requirement that the DOD common language be designed to support software

development for embedded computer systems will lead to a substantial amount

of machine dependency, for embedded computer system software generally

involves development of operating systems or modification of vendor supplied

operating systems. This necessarily requires facilities for describing and

managing machine resources, many of which are machine dependent. SEMANOL

specification of the DOD common language will identify the machine dependen-

cies, characterizing them, where possible, in parameterized form.

Identification of the machine dependencies during the design effort

could help limit their effect. Most language definitions and implementa-

tions are more machine dependent than necessary. The definition document

for JOVIAL (J3), e.g., attempting to be precise, describes computational

effects in machine dependent terms. SF14NOL specification of semantics can

illuminate such situations, showing how they can be defined in machine

independent ways. Where machine dependence is inevitable - e.g., the effect

of finite word length on multiplication and division - SEANOL specification

can be used to limit that dependence to the minimum necessary.

-12-

The discussion of mar-.hlne dependence leads into consideration of the

amount of detail in a formal specification. Compiler writers have been

resistant to the use of formal language specifications, contending that

formal specifications overconstrain the language implementation by specify-

ing how things are done rather than just what is to be done. The SEMANOL

specifications previously prepared, being executable and developed to

demonstrate the precision and completeness of the technique, do constrain

implementations more than necessary. Although a SEMANOL specification

contains the operational semantics, it does not need to constrain compila-

tion details. Instead of specifying an implementation exactly, SEAVIOL can

specify a set of alternate implementations, while retaining its executable

nature by selecting one for execution with the SEMANOL Interpreter. In

effect, parameterizing machine characteristics such as word length specifies

a set of alternate implementations; however, some sets will require more

complex specifications. An issue to be determined for the DOD co mon language

is the degree of detail in the formal specification.

The DOD common language contains advanced features not previously

described in formal specifications. Although some of them are relatively

straightforward, others are more complex - e.g., facilities for parallel

processing. These new features, which are expected to evolve during the

design contractors' development effort, will require some study and analysis

for their precise specification.

Testing Language Specifications and Compilers

Because the SEMANOL specification is executable, it can be tested

using machine methods. This enables the SEMANOL specification to be

debugged to a degree not feasible with non-executable specificatitns.

In addition, it enables the development of test cases having a measured

effectiveness. A SEMANOL specification, being a program, is composed of

executable elements. Each test case will exercise a sequence of these

executable elements, and the SEMANOL Interpreter in constructing the

execution trace effectively identifies them. Measures of test effective-

neSS can be defined in terms of these executable elements. One such

measure is the fraction of the elements exercised by a test case or set

-13-

of test cases. Another such measure is the fraction of the executable

pairs of these elements exercised by a set of test cases. Since identify-

ing the elements exercised also identifies the elements not exercised, it

provides information for designing test cases to exercise the previously

unexercised elements. Automated tools to support generation of test cases

were investigated on RADC contract #/F306O2-76-C-0255.

Testing the SEMANOL specification of a programming language, guided

by measurement of test effectiveness, can test the specification to a high

degree of thoroughness. Testing, in which all executable elements and pairs

of executable elements have been exercised at least once, will have tested

the language specification to an exceptional degree of thoroughness. In

such testing, many executable elements and executable pairs of elements

will have been exercised more than once and many higher order sequer.ces

of executable elements will have been exercised. Such testing, guided by

measurement of its effectiveness, can also eliminate redundant testing - i.e.,

test cases exercising the same elements - thereby holding down testing cost.

The test cases developed to test the SEMANOL specification also form

a test for compiler conformance to the specification; i.e., the test cases

may be compiled by the compiler under test and the execution results of the

compiled test cases compared with the results of execution of the same test

cases by the SEMANOL program and the SEMANOL Interpreter. These test cases,

each of which is relatable (by the execution trace) to a specific portion

of the SEMANOL specification and hence to specific language features, will

provide a test of the compiler encompassing all language features. Compared

to the test cases in current compiler validacion systems, they should have

the following advantages:

9 Their execution results are defined by execution by the SEMANOL

specification (semantic operator) and therefore are consistent

with the language definition.

o They are more complete, since they meet an objeccive measure

of effectiveness.

e They are less redundant and hence more cost-effective.

These test cases, although providing a thorough test of compiler conformance

to the specification, do not necessarily provide a thorough test of compiler

execution; i.e., they may not exercise all elements of compiler code. They

may, however, be usable in other aspects of compiler testing - e.g.,

performance test ing.

Relation of SEMANTOL Specification to Axiomatic Specification

The axiomatic method 10of formal language specification was developed

to provide a means for proving properties of programs and has been used to

aid the formal verification of programs. It generally makes no attempt to

represent syntax. It defines properties of the language in terms of axioms-

statements in predicate calculus asserted to be true for prqgrams written

in the language. Usually, axioms are written defining properties of data

types, functions, procedures, and statements. In the axiomatic specifica-

tions written to date - e.g., for PASCAL 1 and EUCLID 12 iplementation

dependencies and execution effects are incompletely represented.

An axiomatic specification corresponds to a portion of the semantic

definitions section of a SEMANOL specification. Although incomplete, axioma-

tic specifications are directly usable in current formal verification method-

ologies and hience are important to supporting such efforts. Preparation of

axiomatic specifications by the DOD common language design contractors should

identify ambiguities and semantically awkward constructions in the designs,

contributing to the production of cleaner, more complete designs. Because

an axiomatic specification emphasizes different aspects than a SEMANOL

specification, the two specifications will complement each other, providing

together the most complete, precise, and useful specification of any language

to date.

A Standard Definition for the DOD Comon Language

A standard definition of the DOD common language, meeting the require-

ments defined in the Environmental Requirements document, would comprise:

e a formal SEMANOL specification of the language,

* an English reference manual, prepared using the SEMANOL and

axiomatic specification as a basis for writing accurate and

complete descriptions of language features,

* an axiomatic specification suitable for use in formal verifications,

• a set of test cases, thoroughly exercising the SEMANOL specification,

for validating compiler conformance to the specification.

The SEMANOL specification, being precise, complete, and executable,

forms the base for the standard definition. The axiomattc specification,

providing an alternate expression of a portion of the s ,-antic definitions,

should aid in the interpretation of the SEMANOL specification, as well as

providing semantic definitions directly usable in formal verification

methodologies. The English reference manual, prepared using the SEMANOL

and axiomatic specifications, should provide an informal, but reasonably

accurate and complete, description of the language features. The set of

test cases, having been used to test the SEMANOL specification, can be used

to confirm, by execution results, interpretations of language features; and
the test cases are usable for validating compiler conformance to the specifica-

t ion.

Use of the Standard Definition to Support Language Control

A standard deiinition, as described in the preceding section, should

contribute substantially to the effectiveness of the standardization effort.

By providing a precise, complete, visible, and executable definition in the

early stages of language development, it should provide a much more sound

base for the DOD common language than has existed for any other programming

language, eliminating ambiguities and interpretation problems that have

plagued the early years of most programming languages.

The SEMANOL specification can be used as the specification for compiler

implementation. A reference manual, prepared using the SEMANOL specification

and consistent with it, should aid in interpreting the specification. Having

this precise and complete specification (carefully prepared not to over-

constrain the implementation) should aid compiler writers in implementing

the language as intended. The test cases, providing a thorough test of

-16-

compiler conformance to ti specification, should contribute to the early

existence of compilers correctly and uniformly implementing the language.

Most programming languages have, in their early stages, numerous

problems - problems in understanding how to use the language, problems

in faulty implementations, problems in programming manuals inconsistent

with implementations, and problems in achieving the language objectives.

The standard definition should not only help in minimizing these problems

but also contribute to their resolution. As problems are reported by early

users, these problems can be analyzed using the standard definition. If

the problem report contains a code example of the problem, that code can

be executed using the SEMANOL specification and the SEMANOL Interpreter,

with the execution trace identifying the portions of the language involved.

This can help determine whether the problem is one of user interpretation,

faulty implementation, or is a real language usage problem. If that last

case holds, the specific language features contributing to the problem can

be identified. Any proposed solutions involving language changes (which

may be encountered despite the intent to have no changes) can be analyzed

by writing the changes in SEMAINOL, determining their effect on the SEMANOL

specification (revealing, perhaps, unexpected side effects), and testing

their effect by executing the proposed change. The result should be more

definitive analysis and sounder decisions.

A substantial portion of the work on SEMANOL has been supported by

RADC, including development of SEMANOL specifications of JOVIAL (J3),

JOVIAL (J73), and BASIC, development of the SEMAOL Interpreter, and

investigation of automated tools to support generation of compiler test

cases. The author wishes to acknowledge the value of discussions with

S. DiNitto and Capt. J. Ives of RADC and with E. Anderson, F. Belz,

P. Berning, E. Blum, and D. Heimbigner of TRW.

-17-

References

1. Department of Defense Common Language Environmental Requirements,
Preliminary Version Distributed to DOD Higher Order Language Working
Group.

2. Revised "Ironman" Technical Requirements for DOD Higher Order Computer
Programming Languages.

3. E. K. Blum, Towards a Theory of Semantics and Compilers for Programming
Languages, J. Computer and System Sciences 3 (1969), 248-275.

E. K. Blum, The Semantics of Programming Languages, Part I, TRW-SS-69-01,
December 1969, Part II, TRW-SS-70-02, December 1970.

E.R. Anderson, F.C. Belz, and E.K. Blum, SEMANOL(73), A Metalanguage
for Programming the Semantics of Programming Languages, Acta Informatica 6,
109-131 (1976).

E.R. Anderson, F.C. Belz, and E.K. Blum, Issues in the Formal Specification
of Programming Languages, IFIP WG2.2 Bulletin 1977.

4. E.R. Anderson, SEMAIOL(76) Interpreter, RADC-TR-77-365, Vol. IV, Nov. 1977.

5. F.C. Belz and I.M. Green, SEMANOL(76) Specification of JOVIAL(J3),
RADC-TR-77-365, Vol. III, Nov. 1977.

6. P.T. Berning, SEMANOL(73) Specification of JOVIAL (J73), RADC-TR-75-211,
Vol. III.

7. SEMAlOL(73) Specification of Universal CMS-2, USN Contract #NO0123-74-C-
1878, May 1975.

8. F.C. Belz, R.M. Hart, D.M. Heimbigner, Minimal BASIC SEMANOL(76)
Specification Listing, RADC-TR-77-170, Vol. II, May 1977.

9. F.C. Belz, SEMANOL(76) Reference Manual, RADC-TR-77-365, Vcl. II,
Nov. 1977.

10. C.A.R. Hoare, An Axiomatic Basis for Computer Programming, Communications
of the AC1! 12, No. 10, Oct. 1969.

11. C.A.R. Hoare and N. Wirth, An Axiomatic Definition of the Programming
Language PASCAL, Acta Informatica 2, 335-355 (1973).

12. R.L. London, J.V. Guttag, J.J. Horning, B.W. Lampson, J.G. Mitchell,
and G.J. Popek, Proof Rules for the Programming Language EUCLID, May
1977.

-18-

APPROACH TO IMPLEMENT A FAMILY OF

COMPILERS FOR. A HIGH ORDER LANGUAGE

(Notes)

Hartmut G. Huber
15 June 1978

Approach to Implement a Family of Compilers for a HOL

The DOD HOL will be implemented on many machines, both
military and commercial (say 10 - 20 computers). The task of
building these compilers, certifying them and maintaining
them is formidable if they are all independent. The design
outlined in this draft is aimed to reduce cost and complex-

ity of the following tasks:

(1) building compilers
(2) certifying compilers
(3) maintaining compilers

A second goal is to increase the reliability of each compiler
and to insure uniform performance of all compilers.

The approach is certainly feasible. It is a matter of
judging how practical it is and of weighing advantages against
disadvantages.

Machine language

t GI for machine M;
intermediate (MLI)

Source Language F tl IT " ML2

SL> intermediate
language

IL

Each compiler Ci consists of the same frontend F and a code-
generator Gi for a particular machine.

Ci = Gi v F

Also, a s!t of rou ines Ri required for runtime support is
associate.| with earh compiler Ci.

F and each Gi is written in SL; Ri will, in general,
contain machine language routines besides routines written
in SL.

Requirements for F

All data structures use 32 bit words.
Constants are stored as character strings.
Modular design that allows forming a compiler with many

overlays if necessary.
Upper limit for Iiz of parsing tables and other tables

that must reside in memory as a whole.

...

Requirements for IL

ICF (= Intermediate Code File sterage space for IL)
does not have to be r;ident in mtinry as a whole,
it must allow "paging",

All control structures and substructures must be

recognizable by special marker entries,

The IL Code is correct, that means, the code generatr
does not have to cope with bad input,

Entries representing references and operators have a
reference count to be used for register and tt.eTi.poroi,'
management in a subsequent code generator,

Target machine independent optimization is already done.

IL code must be easily manipulatable, movable by an
optimizer; this suggests that entries be quadruples;

operator, two operands, result,

IL code is sequestial, all nesting is resolved,

IL code does not contain forward references except for

forward jumps.

Requirements for IT

The intermediate tables must contain the following

information:

Symbol table
Constant table
Compilor generated label table,
Preset values associated with symbols that are to be

initiated.

No memory allocation is done at this point.

Code Generators

Many code generators will have major parts in common, e.g.
memory allocation and temporary management for machines thial
have the same word length. Other parts are unique for each
code generator.

Thus the effort for constructing n code generators will
not be n times the effort for one code generator. Ideally,
one would have one general program that would construct a
code generator for a machine, given a description of the
relevant characteristics of M. We at NSWC are very interested

in a solution to this problem.

2.

5l

r
Bootstrapping

Assumption: A first compiler exists, written in SL.

running on machine Mo: Co = G 0 F.

Steps to construct compiler for machine Mi:

1. Write Gi for Mi in SL

2. Compile Gia F on Mo >C(Mo)i = compiler

r~nnir3 on Mo, producing code for Mi

3. Compile GioF on C(Mo)i--.C(Mi)i = Ci

= compiler running on Mi, producing code for Mi.

4. Write runtime system Ri for Mi.

Certification of a new compiler

Let TI be a set of self testing test programs, T2 a set
of programs for which code comparison is done. TI, T2 may
overlap.

Certification steps:

1. Compare Code on the IL level for all programs
in T2 using Co and Ci

2. Compare Code on the ML level for all programs

in T2, using C(Mo)i and Ci.

3. Execute self testing tests on Mi.

Starting up the Development of a Family of Compilers

1. Select a system programming language SP (e.g.
AED) and write a base compiler in SP, possibly only for a
subset of SL.

2. Rewrite the frontend of the compiler in its own
language (use a subset if base compiler was implemented
only for a subset). This produces F.

3. Select machine Mo and write code generator Go in SL.

4. Write rtionfnle system Ro fc- machine Mo.

After these steps a STANDARD COMPILER is available on
machine Mo to serve as a basis for the development of che

family of compilers for a family of machines.

iik

Ilk

A ji

Cc
Z4 "

a _j 7

CE EI ~ L a..~~U

.4,

M IM m

(D7
00 0

CoCL

Lo 0 0

m S -
W Cl

E
U.

0
0

C

SE

O 040

- r- u 1 cg

Cu~bo~ E =Z

~~Tc*EO*~~4: ZUnS 4

-S S E~ .c f

< o
~~U.

E 2 -CE .Oja- m-
5w Cf4 Cu oE Cc 0m 0C

Cl D - cC 2 CL

E Z S UOS

CL b.

0

LU

(00
U-i

h.M

0 ~E
~GLk,

S. CM9
7vC

Z
memo~~ V S.- -e-

wEi0 E 0:,.o
ii~~~~~~ -9I&P .0 -

__ .. I

0 00

___ M~:~~ LD 0 0I. M- -0
Cu .~ C c w

E > 'E

8c LonL

:t'- 0& t 1cxE
.c -0 OE I-

.9 M I~

Cu
o

w 0

Cu
C. >O

CL m

co w c
'A7 0 =

r~'u 0 2!fa 6-

.61 - 0'A0~

h.c 0 0
L 5- r- - 0L -g E 2

.1 1 2 m 03=;
CLU, U vs Ccp E 4w 3 g . 'R:

CL E 0 Z .5 w 0 P
4, 2 to C

- Q4' IA t - W 0 FLt

0.5 2 0 0 ~ (

E 02 a: m>. 5 1~

AA .- 4s 4 2W 0 .&

~~~~~~~ CA C . . o

CL .0 S 0 S S *0, 0 -Ii
4 

0E o 0 I



'U~ 0

0

Lu ~ 0. EZ

- > 4E 0l. OU s c m.
E. = -

0c 0 CL 0!.

0.0

un 
E

L* - -

cc 0 U

0-vE 5 .c0 E

- *- ~.gci Ii.z

On W. c 26. ' 5. M C0 0



Lfl
c, c

LL. - E , Luk

L2 CL -j0U 0 j

E =~ -

.0 4 Ec t;"

Ci~.~ u 2 c

S.- a c-I

4 .

7R -S: 2 r- E
Wa , .2 2 zCL Ed'S

c5l .2 2u~ M .
40. CL M.'W,0-

or- ~ u -

C ~ E

E ECL m.. c !
b~E . Cu ~ 5500 Cu

SC
E



Zt2~F C L.

L.u

0 0 a

to 00 w cJ 0 ~0 >~ O0q 's; =

WIq w 4I z

I0 0 1 .

0J C' 502 .
0 0 o-IFr.:

LL~ - t' I A

cE

e'Xg a 00'-

c 0 850 a 4

> 04Y.28

Ch g g b k cr- 0 L

S!.j .U) U.

0 i0,

I CW0



O's$ ahII I Lrml-

4j 0 c

E 3

SEs ;E E9 r .,

(u~C w
'U E 0 L

-'U L= 4

9,1IS8.
E

U.6~ 4- 6oL'
E = to

aa M
~~S* C.0 tOTtC

4) s- *6S
c.u. icI

cc ,
-0 'c f g M

c cm .2 m



C')L
0

0

z

IV-

C.)I
c a; c6 *9-L

~0 C UZ.0 0S b - -,p

U-Z 4io04.X.- 0ho- -"78 8.. .4 E 4--< c . t - wI15 E2
Ow ~ ~ ~ ~ ~~jo .! FAL.Q ' E0 S .

C 5 .2*~g iI 1 0 19 -~~i. =ij w2 u -~ E



1&0~

/100

00 4

-= - E

r- Z 0. 0

_ _r__ _ _ _ _ _

CL = w. :1
44 -C

E uz

PA 0
& =4- -C -

CL 'o t

m 0 r :P"'A 3 CL z M

.04 E:w0 -0
'E E

0 .0 (n 0 -% a

oo00 a E .

Ci E tf 'oo a &I.. E2 f -
4.,E A 0 .9 m 0E

0 ')

CL r
c0 8 2.S 7S E 0. = 41

C; C . cc.

4- 4-C C 0 L L i

C > L.I.



O!E

-E t

C" c E c OEE~
cc,

E n u

0 0 E'

=0 0 -

VC E ; SC

oE 0

II- caiIo ciia z
fA 2A Orlso v - WEB) i S

0i



4)U

r-

d.:2~L 2

t CL
0 LU

a.. 0 '.cL

-c Eo

t r- Is

ra % c

0 0 0

0 -C

0-0
.0 0, 0

~ ~ ~ ' &.2
0. - 4 Cj. ,U

0' __ __ __E_

r -W~

ar;



7.5 E .2

Of- 43 0
o 0u

5.

'AC:'5 C

C m 0

C .- E LS.

4M - V -

so oco

0 m CO~

06. ... Cu

C4CL.4U C cu. 0~0 ~ C
- - 0 CO D

73.4- m 0

to 'r4 t- na )

E) o ..

0m m~C C Q 4 - .o 3:4

Cu u E' .0 a L

E0 m Oo. CC

0 4 8. 0 . SA . ; A'

ro Cu0CrA .

tR



- -

A. 0

(0

.- CV-

ow 0 Oo o(0 .2

00E

LL C-Lo 0..0 *- . L c.2 41ga c0%
~LZ N..

0 M E ECL >

ic

0 4 0

T E c 6



I..-a)

C
2
I-

2~

0

en
0~
C,,
4
IL

F



DEFENSE ADVANCED RESEARCH PROJECTS AGENCY
1400 WILSON BOULEVARD

ARLINGTON, VIRGINIA 22209

TO THE PARTICIPANTS IRVINE WORKSHOP

You have recently received notification from Dr. Standish of the
University of California-Irvine of a meeting 19-22 June 1978.
This workshop will explore technology appropriate for software

F development and maintenance environments.

The Department of Defense High Order Language Working Group (HOLWC)
is engaged in the second phase of a design effort for a commion
language for DoD embedded computer systems. In expectation of
the culmination of this effort next year, other portions of the
program are being planned. As a part of this exercise, in order
to initiate evolving thinking on a variety of topics an Environ-
ment Requirements document is being created. I am sending you a
preliminary version of this document for your information and to
suggest some topics for discussion at the workshop. Suggested
modification and expansion of the document resulting from this
meeting and other input will be entered into the text editing system,
an updated version produced, and distributed.

We regard the environment, compilers, control, tools, etc. as
key to the success of the entire common language program and,
indeed, the focus of the entire DoD technology program to improve
productivity in software. Your contributions at this early phase
of the effort will be instrumental in determining the directions
of research and technology during this vital period.

Sincerely,

RECEIVEDWilliam A. Whitaker
LtCol, USAF

MAy 3 *i MA7 Chairman, High Order
Language Working Group

T. A. STANDISH



Department of Defense

Common Language

Environment Requirements

Prepared for DoD Higher Order
Language Working Group (HOLWG)
15 May 1978



TABLE OF CONTENTS

Section Title Page

1.0 Introduction 1-1
1.1 Purpose 1-1
1.2 Reference Documents 1-2
1.3 Definition of Requirements Terms 1-5

2.0 Language Standard 2-1
2.1 Standard Document 2-1
2.2 Intent of the Common LanguageZ1
2.3 Explicit Policy and Controls for Standardization 2-2
2.4 Approach 2-3

3.0 Control and Support Organizations 3-1
3.1 Configuration Control Board 3-1
3.2 Compiler Validation Agency 3-2
3.3 High Order Language Working Group 3-3
3.4 Language Support Agency 3-3
3.5 Application Library Agency 3-4
3.6 User Organizations 3-4

4.0 Configuration Management 4-1
4.1 Objectives and Strategy 4-1
4.2 Configuration Control for the Common Language 4-1
4.3 Configuration Control for Translators 4-2
4.4 Configuration Control for Supporting Software 4-2
4.5 Configuration Control for Application Programs 4-3

5.0 Compilers 5-1
5.1 Production Compilers 5-1
5.2 Compilers Validation 5-2
5.3 Delivery Packages 5-3
5.3.1 Compiler Delivery 5-3
5.3.2 Compiler Delivery to User Site 5-4
5.4 Compiler/User Interface 5-4
5.4.1 Compiler Inputs 5-4
5.4.2 Compiler Outputs 5-6
5.4.3 Run Time Outputs 5-9

*5.5 Translator Functional Objectives 5-10
5.6 Translator Production Guidelines 5-11

*6.0 Run Time Supporting Software 6-1
6.1 Purpose and Intent 6-1
6.2 Executives 6-1
6.3 Test and Debug Package 6-3



TABLE OF CONTENTS (CONTINUED)

Section Title Page

7.0 Other Supporting Software 7-1
7.1 Purpose and Intent 7-1
7.2 Compile Time Tools 7-1
7.2.1 Fault Detection Tools 7-1
7.2.2 Flow Charters 7-1
7.2.3 Correctness Provers 7-2
7.2.4 Symbolic Program Executors 7-2
7.3 Object Program Link/Load Tools 7-2
7.4 Requirements Generation Tools 7-4
7.5 Design Tools 7-4
7.6 Construction Tools 7-5
7.6.1 Design Language Translation Tools 7-5
7.6.2 External Library Systems 7-5
7.6.3 Test and Debug Systems 7-5
7.7 Integration Tools 7-6
7.8 Control Tools 7-6
7.8.1 Configuration Management Aids 7-6
7.8.2 Project Control Tools 7-6
7.9 Migration Tools 7-7

8.0 Application Software 8-1

9.0 Language and Environment Documentation 9-1
9.1 Language Documentation 9-1
9.2 Compiler Documentation 9-1
9.3 Supporting/Application Software~ Documentation 9-2
9.4 Methods of Documentation 9-2

10.0 Information Collecting, Dissemination and 10-1
Promotion

11.0 Training Support 11-1
11.1 Types of Training Required 11-1
11.1.1 Programmers Using the Coon Language 11-1
11.1.2 Translator Developers 11-2
11.1.3 Management of Projects Using the Common Language 11-2
11.2 Training Modes 11-2

12.0 Project Management Aids 12-1
12.1 Requirements Definition and Tracking Aids 12-1
12.2 Design Aids 12-2
12.3 Construction Aids 12-2
12.4 Integration Aids 12-3
12.5 Control Aids 12-4



Section 1

Introduction

1.1 Purpose

The Department of Defense (DoD) has defined a Common

Higher Order Language (HOL) for embedded systems based upon a

language requirements document. The language requirements

document is the product of the HOL Working Group (HOLWG)

formed within DoD. It has incorporated comments and suggestions

from the government, academic institutions, and industry until

it was judged to be of sufficient correctness and throughness

to be used as the requirements document for the design of a

DoD common language for embedded systems.

In order for the common language to be successful in achieving

the desired objectives, the environment in which it is used

has to be conducive to its support. The environment includes

all supporting activities for using any language to develop

programs for all systems - small, medium and large. These

aids include for instance:

1. Organizations and methods to control the language

and promote development of tools

2. Compilers for converting HOL into machine language

of the target computer

3. Tools to aid in the design, test and debug of application

programs

I-I



4. Organizations and methods to research the use of the

language and prepare for its next version

5. Materials and techniques for training users of the

language

6. Methods for collecting, cataloging and disseminating

information about the language and programs written

in the language

7. Project management aids to achieve successful

implementation of systems where success is measured

over the life cycle

This document describes the requirements for the environment

necessary to the success of the common language. It will go

through a number of iterations, as the language requirements

have, considering suggestions from all parts of the software

world. It will also spin off more detailed requirements in

specific areas such as tools or control.

The theme behind the inclusion of any topic has been to

list all methods which have come to be recognized as necessary

for the production of reliable embedded systems.

This is a preliminary document for circulation to generate

comments and wide latitude has been allowed. Later versions

will strive for greater rigor.

1.2 Reference Documents

0 Standard Definition Document for the Common

Language (to be defined).

0 DoD Requirement for High Order Computer Programming

Languages, Ironman, Revised July 1977.

1-2



o DoD Requirement for High Order Computer Programming

Languages, Tinman, June 1976.

o DoD High Order Language Program Management

Plan, January 14, 1977.

0 The Navy Fortran Validation System, Patrick M. Hoyt,

AFIPS Volume 46, 1977.

0 Test Planning, R. Dean Hartweck, AFIPS Volume 46,

1977.

o A Time for Cross-Compilers, Marcus L. Byruck,

Datamation, May 1977.

o High Order Language Standardization for Avionics,

W. L. Trainor and H. M. Grove, I.E.E.E. NAECON, 1977.

0 Language Control Facility (LCF) Study, RADC-TR-76-

386, Volume I: Component Requirements for the LCF,
Volume II: Evaluation of the Software Tools for the

LCT.

o Managing the Development of Reliable Software,

R. D. Williams, Proceedings International Conference

on Reliable Software, April 1975.

o Integration Engineering: An Approach to Rapid System

Deployment, Robert C. McHenry and Jerry A. Rand,

Technical Report FSD 77-0179, IBM Corporation,

Gaithersburg, MD.

o A Program for Software Quality Control, Paul Oliver,
I Proceedings AFIPS 1974, Volume 43.

1-3



o Experience in COBOL Compiler Validation, George N. Baird

and Margaret M. Cook, Proceedings AFIPS 1974, Volume 43.

0 PSL/PSA: A Computer - Aided Technique for Structured

Documentation and Analysis of Information Processing

Systems, Daniel Teichroew and Ernest A. Hershey, III,

IEEE Transactions on Software Engineering, Volume

SE-3, No. 1, January 1977.

o Design and Implementation of Programming Languages,

DoD Sponsored Workshop, Ithaca 1976, Lecture notes

in Computer Science Number 54, Springer - Verlag.

o DoD's Common Programming Language Effort, David A. Fisher,

Computer, March 1978.

0 Software Tools: A Building Block Approach, NBS

Special Publication 500-14, I. T. Hardy, B. Leong -

Hong, D. W. Fife.

1-4



1.3 Definition of Requirements Terms

The following terms have been used throughout the text to

indicate where and to what degree individual requirements

apply.

1. Shall - indicates a requirement

2. Will - indicates a consequence that is expected to

follow or indicates an intention of DoD

3. Should - indicates a desired goal but one for which

there is no objective test

4. May - indicates a requirement to provide an option

to the user

5. Must - indicates a requirement placed on the user by

the language and its translators

1-5



Seution 2

Language Standard

2.1 Standard Document

The second document referenced in Section 1.2 states the

technical requirements for the common language. It is a set

of functional requirements for a language appropriate to

embedded computer applications (i.e., command and control,

communications, avionics, shipboard, test equipment, software

development and maintenance, and support applications).

The syntax and semantics of the language are described in

a document which shall become the standard for deciding whether

or not all compilers conform to the language specification.

That document shall be referred to as the standard definition

document. The Configuration Control Board shall maintain and

interpret the document.

2.2 Intent of the Common Language

The goal of the common language is to reduce total costs

of software incurred by DoD. This goal will be promoted by

the following general design criteria for the language.

1. Generality - The language should be of a general

nature applicable to a wide range of embedded systems

computer applications.

2. Reliability - The language should promote, encourage,

and enforce the use of techniques which lead to

reliable software.

2-1

... . ..LI I II - . . . . ' - rl l l -. . .. . . . .£ . . .2. .. . . ., . . - ..



3. Maintainability -The language should emphasize

readability and understandability of programs arnd

lead to less costly maintenance.

4. Efficiency - The language should allow compilers

which produce efficient object programs.

5. Simplicity - The language should reduce unnecessary

complexity by means of uniform syntactic conventions

and consistent semantic structure.

6. Implementation - The language should facilitate

production of compilers that are easy to implement

and are efficient.

7. Machine Independence - The language should strive

for machine independence to make possible the trans-

portability of application programs.

8. Formal Definition - There should be a formal definition

of the language for unambiguous control.

2.3 Explicit Policy and Controls for Standardization

Once the common language is defined it shall be added to

the list of approved higher order languages in DoD 5000.31.

In order for the HOL to achieve expected benefits, there

shall be no variants of the language. Organizations supporting

the coon language shall monitor and oppose any attempts at

non-conformance to the published standard.

Registration of the language as a Federal Information

Processing Standard will be done so that it may be used through-

out all government organizations.

2-2



The supporting organizations will monitor worldwide

activities in language development and participate to promote

further standardization of the language. Submissions to the

American National Standards Institute and the International

Standards Organization is appropriate to expand the user base

and further reduce the likelihood of variants.

2.4 Approach

All environmental elements will support the above goals

for the common language. Elements necessary for success are

described in subsequent sections as follows.

1. The primary necessity is an organization to control

the language and promote development of its supporting

software. Section 3 describes this organizational

structure.

2. Methods for controlling the common language and its

compilers are required to allow managed change when

necessary for technical growth. These methods are

described in Section 4.

3. Compilers to convert the language from HOL to

target machine code are required. Requirements for

various types of compilers are given in Section 5.

4. Tools required for application program development,

control, and execution are described in Sections 6

and 7. Tools for design, debug, test, modifications

of code, and execution control are necessary parts

of a successful software environment.

5. Section 8 discusses requirements for application

programs written in the common language. The r'ethods

2-3



80-809 090 CAIFORNIA LRIV IRVINE DEPT OF INFORMATION AND COP-ETC F/ g2

PROCEEDINGS OF THE IRVINE WORKSHOP ON ALTERNATIVES FOR THE ENVI-ETC(U)
1978 T A STANDISH OAAG29-78-M-0219

WCLASSIFIED I-ICS-78-83lfllfl//lllllf
mIIII////I
I/nI/I////II/
inEEllI



1111.0.6
11= 132111120

1II.8
.1111I 25 -111 1. 111111.6

MICROCOPY RESOLUTONTSTC-IR



described will lead to high portability for embedded

systems.

6. Documentation requirements for the common language

and its supporting software are described in Section 9.

7. Section 10 describes methods for collection and

dissemination of common language materials so that

the embedded computer software community has ready

access to all required common language information.

8. Diverse training will be required for successful

implementation of the common language. Section 11

addresses these training requirements.

9. Section 12 describes the tools and techniques required

by project management for successful embedded systems.

2-4



Section 3

Control and Support Organizations

The following paragraphs describe the organization of DoD agencies

and user groups which have been proposed to effectively control standard-

ization of the DoD ROL and provide support.

3.1 Configuration Control Board

A Configuration Control Board (CCB) shall be established

by DoD and be responsible for custody and maintenance of the

formal definition of DoD ROL. Primarily, the function of the

CCB shall be to minimize changes to the language and prevent

variant translators from occurring.

The CCB shall be the final arbiter in any interpretation

dispute of the DoD ROL definition. All official interpreta-

tions shall become part of the language specifications. All

requests for changes and interpretations will receive a prompt

response.

To reduce potential influence of special interest groups,

the CCB shall be autonomous to compiler or applications developers.

Membership of the CCB shall include representation from

major Federal user comunities within the United States.

Membership from outside the U.S. will be appropriate as other

nations make a major coumitment to the language.

3-1



The CCB shall be operational as soon as the language is

frozen and submitted for standardization. At that time,

formal definition of the DoD HOt shall be controlled by the

CCB.

3.2 Compiler Validation Agency

An agency will be eatablished to validate that compilers

are complete and correct implementations of the DoD HOL. The

agency will not perform any function other than compiler

validation and shall be independent reporting only to the CCB.

As a minimum, validation shall be conducted by subjecting

compilers to a set of test program. Development and main-

tenance of test programs shall be the responsibility of the

validation agency. Trouble reports from users will be used to

refine and update test programs in an effort to develop the

moat comprehensive test programs possible. All test programs

shall be documented and made available to implementors who

wish to test compilers independently prior to formal valida-

tion. Formal validation shall consist of reviewing compiler

documentation and running the test programs.

A validation report shall be prepared by the agency.

Validation shall be required by defense projects when

compilers are initially developed and when modified. A

requirement shall be to validate the compilers at the start of

any project which plans to use the compiler.

The validation agency shall be established and operational

within one year from the selection of the single language.

3-2



3.3 High Order Language Working Group

A High Order Language Working Group shall have responsibility

for coordinating DoD common language activities. This group

will provide the services of initiating and coordinating

research and development activities, incorporating feedback

from language implementors and users into ongoing programs,

and directing funding into the most productive areas. The

group will provide overall guidance and direction to the

Language Support Agency (LSA) and the Application Library

Agency. The group will act as the liaison agent between the

LSA and the CCB.

An ancilliary function of the group will be to represent

the common language with national and international standardization

organizations.

A member of the working group will chair an organization

of members from government, academic institutions, and industry

to research language problems, technical advances, and documentation

methods.

3.4 Language Support Agency

A Language Support Agency shall represent the bulk of

staff and funding in the DoD HOL organization. It shall be

the focal point for most translator, support tool, and general

library development and maintenance activity.

As the focal point for compiler, support tool and library

development and maintenance, the LSA will be the primary

interface for user and implementor communities. The agency

shall develop and maintain documentation, develop and conduct

training courses and respond to all user and implementor

inquiries.

3-3



All compilers, support tools, libraries, and language

documentation maintained by the LSA shall be readily available

to any legitimate and qualified language user or implementor.

Nothing will be done to inhibit language users and implementors

from using the facilities and services of the LSA.

3.5 Application Library Agency

Application libraries, in the long term, will become very

large and diverse. An effort will be undertaken to demonstrate

the utility of a centrally supported application library.

Several promising specialized application areas are signal

processing, display processing, and communication networks.

The ARPANET is a particularly well documented application that

may be provided as a common application package.

Once developed, application libraries could be supported

and maintained by their specific support agency. These agencies

would be formed as desired for particular applications, in

some cases colocated with the Language Support Agency.

3.6 User Organizations

User organizations are necessary to serve as a technical

forum for common interests of those using the common language.

All common language organizations will foster user organiza-

tions by giving them recognition, disseminating information

about their meetings and purposes, participating in their

meetings, and giving due consideration to all user organi-

zation proposals.

The organizations may be grouped by special interest such

as the following.

1. Use of a particular translator

3-4



2. Use of a particular computer

3. A particular application area.

The user organizations will interface with the CCB for

language change requests and with the LSA for technical infor-

mation exchange.

3-5



Section 4

Configuration Management

4.1 Objectives and Strategy

The strategy for controlling the common language and

environment will be to institute managed change which allows

for evolutional, stepped growth of the language, translators,

development tools, and test tools. Application programs will

continue to be controlled by the responsible agencies.

4.2 Configuration Control f or the Common Language

Responsibility for all changes to the common language

shall be under control of the Configuration Control Board

(CCB).

All proposals for changes will be accepted and recorded,

but, in general, changes will be discouraged due to the cost

impact. If the change passes a threshold to determine that it

will be considered by the CCB, it will be investigated for

being part of a generic requirement. The CCB will be supported

by the LSA to investigate the impact and necessity for any

proposed changes. Changes will be grouped and incorporated at

the decision of the CCI. Either a time limit or a quantity of

changes may be used to make a change to the language.

Configuration control methods require:

1. Identification and complete description of the items

under consideration.

4-1



2. Control of these items to prevent any unauthorized

changes or variations from occurring.

3. Accounting for the items to establish baselines and

track authorized changes so that the presently

approved version is known and the delta from the

previous level is known. Changes will include

corrections and enhancements.

A common language description shall be contained in the

standard definition document described in Section 2. Control

of the language shall be the responsibility of the CCB.

Procedure. will will be established to record all proposals,

changes, and interpretations to the standard document by the

CCB.

4.3 Configuration Control for Compilers

All compilers used by the Federal Government, whether

owned or not, must be controlled. Those owned by the Federal

Government shall be controlled by common language organiza-

tion. Those not owned will be controlled by the validation

procedures which shall be required for all compilers used on

federal projects. In both cases, complete descriptions of the

product and accurate configuration information shall be main-

tained. Compilers shall be validated after each modification.

The validation procedures are described in Section 5. Com-

pilers used outside the Federal Government are strongly encouraged

to use the available validation facilities.

4.4 Configuration Control for Supporting Software

Supporting programs owned by the LSA will be controlled

by establishing procedure. to state the configuration and

4-2



then managing approved changes. All programs will be recorded

and cataloged by the LSA for promoting transferability.

4.5 Configuration Control for Application Programs

Application programs will be controlled by the development

agencies. The development agencies shall furnish the LSA with

a description of all programs developed. The descriptions

will be cataloged by the LSA. The description shall be in a

standard abstract form.

Each development agency shall be required to search the

catalog prior to developing new application programs in order

to use existing, proven software rather than developing more.

4-3



Section 5

Compilers

5.1 Production Compilers

The initial production compiler will be implemented in

either a machine transportable fashion or in the common language

itself. It will be targeted for one of the standard militarized

computers so as to provide maximum useability. In addition,

there may be a machine transportable simulator for the targeted

machine to allow further use. The initial production compiler

will be implemented in two sections: first a root component

which is target independent; and second, the target machine's

code generator.

The production versions of the compiler could be developed

by anyone. To carry the DoD certification however, means that

the version in question has been validated by the validation

agency as meeting the standards of the common language. The

validation process is explained in Section 5.2.

The following design factors should be considered by any

implementor. The use of the common language as the implementing

language for the compiler is encouraged. After 1982, it will

be required. In the cases where the validation agency has

validated a compiler which both executes on and is targeted

for the new compiler's host, the use of the common language is

mandated.

5-1



5.2 Compiler Validation

The purpose in validating the compilers is to determine

the degree of conformance to the language as described in the

standard definition document. Conformance will be measured to

the syntax and semantics of the language. Common language

shall be specified in a manner which promotes validation and

decreases the chances for misinterpretation by the developer.

The method of validation shall be to compile and execute

a standard series of programs w.ritten in the common language

to test for correct translation. The test set of programs

will validate single language statements as well as sequences.

The tests shall be comprehensive for all statements as well as

for extremities and crucial cases. The tests shall also

represent examples of embedded systems applications. A validation

report shall be prepared stating the results of the tests and

the resources used.

The testing shall be done by the validation agency. The

validation agency will be responsible for preparing the set of

standard tests, compiling the validation information, and

approving the material. The agency will either officially

validate the translator or state necessary corrective actions

prior to official validation. The iplementor shall be required

to state that there are no unauthorized extensions to the

language translator.

The published test set shall be recognized as being an

incomplete test of the compiler and validation may be denied

should the compiler fail any added tests.

As part of the validation effort, benchmark tests to

describe compilation speed, compilation memory usage, object

code speed, and object code memory usage shall be required.

5-2



5.3 Delivery Packages

5.3.1 Compiler Delivery

The delivery package for a new government compiler

shall be sent to the validation agency by the implementor.

Once the compiler is validated, the delivery package will

be forwarded to the LSA by the validation agency thus

only validated compilers will be available from the LSA.

The package will consist of the following items.

1. The source code and listing for the compiler.

2. The object and/or executable code of the

compiler as appropriate.

3. The system programmer's guide which shall

include how to install and maintain the com-

piler. Also included will be the linkage and

external interface specifications.

4. The compiler's logic manual which shall describe

the internal design of the compiler.

5. The certificate of validation and the validation

report.

6. The compiler user's guide including how to

execute the compiler and benchmark results

against other compilers both for common lan-

guage and for other languages.

7. Source code along with object and/or executable

code for the run-time support routines for

5-3



housekeeping, error detection and recovery,

multi-tasking, etc. and a standard library

package.

8. Maintenance plan and procedure.

5.3.2 Compiler Delivery to User Site

A user requesting a copy of a compiler will receive

a package containing the following items from the LSA.

1. Object code and/or executable code of the

compiler and its run-time support routines as

appropriate.

2. The system programmer's guide.

3. The compiler user's guide.

4. A proceduce for reporting problems.

5.4 Compiler/User Interface

5.4.1 Compiler Inputs

Inputs to a compiler fall into three categories:

source statements to be compiled; target machine charac-

teristics; and compiler control and option parameters.

5.4.1.1 Source statements to be compiled

A given compiler may support various formats of

source images, every translator shall accept the 80-

character card image.

5-4



5.4.1.2 Target machine characteristics

The minimum target machine characteristics that

a compiler will accept are as follows.

1. Machine model

*2. Memory size

3. Special hardware options

4. Peripheral equipment

5. Optional instruction sets available (e.g.

MATHPAK)

6. Operating system

While the input source images may contain this

information, the compiler shall accept this data

from a separate source. This will allow central

control of the target machine configuration.

5.4.1.3 Option parameters

Option parameters are inputs that control the

environment of the compilers. These include the

following.

1. Listing controls

2. Debugging controls such as whether or not

to output code for subscript checking,

assertion checking, etc.

3. Optimization options

5-5



While either the input source or the machine

specification may contain this information, the

compiler shall accept this data from a separate

source. This will allow central control of the

compiler's environment.

5.4.2 Compiler Outputs

5.4.2.1 Object code

Object code output of the compiler should be

formatted in accordance with one of the standard

loaders controlled by the LSA. The object code may

also contain information being passed from the

compiler to the compiler's run-time support routines

for various purposes such as symbolic debugging,

formatted dumps, error-checking, etc.

5.4.2.2 Source listings

The compiler shall be capable of producing

source-only listings at the user's option. One

listing should contain source as input to the compiler

and before any conditional compilation statements

are processed. This listing should also show, in

the same format, any input statements retrieved from

a source library by the compiler. A second listing,

which shall be at the user's option, is after all

library retrievals and conditional compilation

statements have been processed. In addition, both

these listing formats shall permit the user to show

statement number (for error displays), the occurrence

of errors, and the block level.

5-6



5.4.2.3 Source/object listing

The source/object listing will have the sam

options as the source listing. In addition, the

listing will show the instructions generated by each

compiler input statement. This data shall be intermixed

with the listing of source statements.

5.4.2.4 Error messages and listings

Compilers shall be required to use the standard

diagnostic and warning messages included in the

standard definition document. Messages shall be

grouped into classes. All error messages shall be

unambigu~ous. The same error message cannot be used

for two or more sets of related symptoms. The

imnplementor shall attempt to provide the following

with each error: for syntactical errors, the offending

symbol and input statement column; for semantic

errors, the offending symbol or expression (e.g.

UNDEFINED SYMBOL - X).

Although the error messages shall be mixed with

the source and/or object listings, there shall also

be an error sumary listing giving a total count for

each error and the statement numbers on which that

error occurred.

5.4.2.5 Symbol attribute listing

The symbol attribute listing shall be produced

at the option of the user. The attribute listing

shall contain a list of all symbols defined and

their characteristics such as type, scale, range,

5-7



precision, dimensions, statement on which the symbol

was defined, its block level, and its scope. The

listing shall be in the collating sequence defined

in the standard definition document.

5.4.2.6 Cross reference listing

The crosa referenc~e listing shall be produced

at the option of the user. The cross reference

listing shall contain a list of all symbols defined,

their block level, the statement on which they were

defined, and a list of statements where the symbol

is set or used. The listing shall attempt to differ-

entiate between set and used.* The listing shall be

in the collating sequence defined in the standard

definition document.

5.4.2.7 Program structure map

The program structure map shall be produced at

the option of the user. The map shall show the

structure of the program with regards to blocks

where data, procedure, function, or path are declared.

In addition, the map shall show any fetchs of defini-

tions or input source from a library.

5.4.2.8 Compiler resource usage listing

The compiler shall output a listing showing the

amount of computer resources used. Examples are

amount of computer time used, percentage and size of

symbol table used, ae.

5-8



5.4.2.9 Other Listings

The compilers may produce additional listings,

as aids, which are results of the new language.

5.4.3 Run Time Outputs

These outputs shall be produced by the compiler's

run-time support routines. These routines provide house-

keeping, storage management task/path management, error

detection and recovery, mathematical functions, debugging,

etc.

5.4.3.1 Run time errors

The run-time displays for errors shall include

the subprogram, definition module, or path, the

procedure, and the statement number on which the

error occurred. The implementor shall attempt to

display the offending symbol if any. The display

shall also include a trace back of all currently

executing or pending procedures, functions, paths,

etc. A dump of all active variables shall be at the

option of the user.

5.4.3.2 Run-time debugging

The outputs of run-time debugging shall contain

information similar to the error display.

5.4.3.3 Run-time resource usage

The compiler's run-time support routines

shall, at the option of the user, produce a sumary

5-9



of computer resources used in the execution of the

program. An example is the amount of computer time

and storage used.

5.5 Translator Functional Objectives

Translators referred to in this, and the following,

section are meant to reference the superset of compilers,

interpreters, etc.

The following objectives shall be met by each translator

developer. They are to be considered as general guidelines

for translator development.

1. The translator shall be validated as error free

2. The translator shall. generate efficient code but not

sacrifice clarity

3. The translator shall conform to the documentation

standards prescribed

4. The translator shall be unforgiving by identifying

all syntax and semantic errors

5. The translator shall be supported by high level

debugging tools for static testing of programs on

the host computer

6. The translator shall assist in enforcing management

standards by furnishing required diagnostic messages

7. The translator shall be built in a modular fashion

which promotes extensions of CCB approved features

5-10



8. The translator shall be designed to interface with

library programs and executive programs which all

together form an application program development

plan. These programs may have been compiled by

other compilers

5.6 Translator Production Guidelines

The following items apply to the production of translators.

The items are included to address different requirements for

various parts of the common language environment.

1. Different types of translators will be produced for

different environments. For instance, an interpretor

will be produced for purposes of programmer education

and for environments where fast response is required.

A compiler will be produced for development of

application programs

2. A compiler generator program may be developed to

speed production of compilers for all target computers

3. Each translator shall have optimization features

which may be used to optimize memory useage or

execution speed

4. Cross compilers shall be developed to translate

common language on a computer having support tools

into the machine language of a target computer. The

cross compiler may be written in Fortran or in the

common language

5-11



5. Compilers which have special function target machines,

such as graphics, should attempt to make use of the

compiler step, rather than the execution step,

preparing output to the graphics machine. This

capability would be similar to compilation of

variables which are used for execution many times.

5-12



Section 6

Run-Time Supporting Software

6.*1 Purpose and Intent

The purpose of this section is to list the requirements

for the executives and operating systems which will be required

to support scheduling, execution, and synchronization of

application programs written in common language. The intent

Is to require a basic set of execution time tools which will

lead to success of the common language.

Language features to be supported are parallel processing,

exception handling, and memory management.

6.2 Executives

Executive programs will be required for each target

computer. These should' include the following capabilities.

1. Scheduling and execution of application tasks.

Parallel processing shall be allowed to permit a

specified number of control paths to operate in

parallel and rejoin at a single point either inter-

leaved on one CPU or on multiple CPU's.

2. Handling of interrupts.

3. Handling of 1/0 requests.

4. Interfacing with a teat and debug package.

6-1



6.3 Test and Debug Package

Test and debug programs will be required to interface

with each executive for all target computers. The following

capabilities are required. They may be interactive.

1. Execution and Data Trace - Various levels of trace

capabilities shall be included. For instance, the

programmer will be able to trace the module or task

execution flow through the system or trace all

branches through a particular module. Task control

blocks f or the task being executed should be dumped

if specified data is accessed.

2. Memory/Storage Alteration - The operator will have

the capability of altering memory or another storage

device in symbolic form. All alterations will be

entered into a journal to be printed at the end of

the test.

3. Journal Print - At any point in the test the coerator

will be able to print a history of events occur: ing

during the test in time order.

6-2



Section 7

Other Supporting Software

7.1 Purpose and Intent

Supporting software described in this section consists of

all programs required to specify, design, develop, compile,

test (off-line), document, and control application programs

written in common language.

Included in this section are those techniques and programs

which aid In migration to the common language from present

languages.

'Where practical, these tools will be written in the

co-on language. A consistent user interface will be requirbd

for these tools.

7.2 Compile Time Tools

7.2.1 Fault Detection Tools

Programs to test for facility coding standards, flag

error prone constructs, check module interface coordination,

and furnish data cross reference listings for programs

under development will be required.

7.2.2 Flow Charters

Programs to list the logical structure of a program

as well as the control flow of modules within a system

7-1



will be required. Various levels of charting will be

available to each branch or to show module/subroutine

calls.

7.2.3 Correctness Provers

Program verifiers to test in a mathematical fashion,

to see that the program corresponds to a given specification

in a design language will be required.

7.2.4 Symbolic Program Executors

Programs which logically execute programs under

development will be required. These programs will provide

a capability to examine symbolic results of an execution

in order to compare against the design language specification

for correctness.

7.3 Object Program Link/Load Tools

A linking/loading program will be required for each

target computer in order to fit the compiled pieces of a

software system into an executable system for the particular

executive in use. Included in the requirements are some that

facilitate system development. These programs may also pre-

serve and check for the strong typing, test assertions, and

support other protection mechanisms built into the language.

Requirements for the link/load programs are as follows.

1. Convenient User Interface - a command language will

be developed to facilitate directing the link/load

programs in specifying desired capabilities.

2. Stub Generation - to facilitate top down programing,

the link/load program will build stubs for modules

7-2



that are not yet defined in a system. Stubs should

take specified memory space and have loops generated

to take the specified CPU time.

3. Module Placement - module placement in memory will

be as specified by the user or may be placed in

memory by the link/load program. Amount of memory

space used will be optimized if requested.

4. Automatic Module Retrieval/Library Hierarchies - the

order of search for object modules may be specified

by the user to facilitate retrieval.

5. Object Module Formats/Object File Organization - the

formats of the items to be linked and loaded will be

recognized by the link/load program so that common

language items may be loaded along with non common

language items.

6. Symbol Definition - the user will be able to specify

directions for the translator for any undefined

symbols.

7. Boundary Alignment - the user will be able to specify

locations for externally relocatable elements either

by specific location or symbolically. Space between

elements may be specified either absolutely or as a

percentage of the element's space.

8. Automatic Coummon Placement - the user will be able

to place at will or the link/load program will place

all common data.

9. Closed Tree Structures - specified portions of a

tree structure may be loaded without all called

elements.

7-3



10. Dynamic Overlays - overlays will be built with the

intention of dynamic loading.

11. Multiple Element Placement - the multiple loading of

an object element will be allowed.

12. Listing Output - the link/load program should

furnish listings for the following.

a. Memory map usage (areas used by specific

elements and areas not used)

b. Cross-reference listing of external symbols

by module reference

c. Hierarchical charts of element calls and

includes

d. Stubs generated

e. Dynamic overlays

f. Comprehensive diagnostics for all link/

load capabilities

7.4 Requirements Generation Tools

A method of cataloging system requirements in order to

test throughout development for requirement compliance will be

provided. This capability will be similar to that of the

Problem Statement Language/Problem Statement Analysis (PSL/PSA)

programs.

7.5 Design Tools

Design tools required will be those which support a

methodical design process. Programs will be available to

7-4



support a design language by testing syntax correctness,

formatting, and proof of correctness. The designed capa-

bilities will be able to be compared to the requirements.

7.6 Construction Tools

Construction tools which assist in the writing of programs

in the common language will be required.

7.6A1 Design Language Translation Tools

Methods will be required to translate programns

written in a design language to the common language.

7.6.2 External Library Systems

Library methods of storing and retrieving both

source, object code, and test cases will be required.

Entries shall include type definitions, input - output

packages, common pools of shared declarations, application

oriented software packages, other separately compiled

segments, and machine configuration specifications. The

library shall be structured to allow entries to be associated

with particular applications, projects, and users.

Multiple versions of library entries shall be allowed.

7.6.3 Test and Debug Systems

Test and debug capabilities will be required for

diagnosing the performance of programs before they are

integrated into a system. The following capabilities

will be required for each test system.

1. Test Input specification and control language.

This capability is intended to prevent each

programmer from having to develop test drivers.

7-5



2. Memory dump related to the symbolic program

along with register indication.

3. Snap capability for data areas.

4. Trace methods to record paths and frequency of

statement execut ion.

5. Breakpoint and dump capabilities.

6. Symbolic patch methods to be used on conjunction

with the library systems.

7. Cumulative recording routines to LraCk which

parts of programs have/have not been tested to

allow better test case generation.

7.7 Integration Tools

Integration tools which will assist in fitting the individual

programs into a system will be required.

7.8 Control Tools

7.8.1 Configuration Management Aids

Programs which will assist in controlling the common

language and programs writtea in common language will be

required.

7.8.2 Project Control Tools

Programs and techniques to control project resources

and track status will be required.

7-6



7.9 Migration Tools

Programs which will aid the migration of present languages

to the common language by performing translations may be

required.

9i

7-7



Section 8

Application Software

One of the goals in the use of a Higher Order Language is to

increase portability of programs written in the language. For

those application programs written in the common language portability

will be promoted by the following methods.

1. Information concerning application programs will be

maintained by the Language Support Agency and cataloged

by type of program. A standard abstract format will be

employed.

2. Major types of embedded systems will be identified and

basic tasks within these types will be identified for

catalog purposes.

The types of embedded systems are as follows:

a. Command and Control

b. Comunications

c. Avionics

d. Shipboard

e. Test Equipment

8-1



3. Organizations concerned with common language will encourage

special interest groups within user organizations to

address each of the major types of embedded systems as

well as common functions across all embedded systems.

Groups would be formed for communication, avionics,

command and control, operating systems, data management

and software development.

8-2



Section 9

Language and Environment Documentation

Documentation goals for the common language and its environment

are to describe fully all aspects and have the descriptions avail-

able in many forms. The Language Support Agency (LSA) shall be

responsible for setting documentation standards.

9.1 Language Documentation

Basic documentation for the language, which will take

precedence over all other language documents will be the

standard definition document. The standard definition docu-

ment shall include the syntax, semantics, and appropriate

examples of each language feature including those for standard

library definitions. Other documents required to support the

language as follows.

1. Users Guide

2. Primer

3. Translator Developers Guide

These documents shall be independent of any particular implementation

of the comon language.

9.2 Compiler Documentation

A basic set of documentation will be required for each

compiler and will include the following.

9-1



1. Users Guide

2. Logic Manual

3. Compiled examples

4. Benchmark results

5. Compiler defined parameters

6. Techniques for effective use of this compiler.

9.3 Supporting/Application Software Documentation

The LSA will develop standards for documentation including

the definition of mininum standards for supporting software

and application programs.

9.4 Methods of Documentation

A master index will be maintained for all documentation

pertaining to the common language. Abstracts will be cataloged

to encourage developers to use existing, documented programs.

The primary method of documenting all software will be the

listings.

Formats for all levels of program documentation shall be

defined.

All user interface control language shall be specified in

a formal method, such as, Backus-Naur format.

Documentation will be provided in languages other than

English. These languages will include French, German, Italian,

Portuguese, Japanese, Spanish, Arabic, Turkish, Greek, Norwegian

and others.

9-2

(



Section 3.0

Information Collection, Dissemination, and Promotion

It will be the responsibility of the Language Support Agency (LSA)

to collect and disseminate all information concerning the common language.

The LSA will maintain information about the language as well as

programs written in the language and those which support the language.

This information will be cataloged into a hierarchical document which

will contain sections on all types of documents which pertain to the

common language. The catalog will contain a brief description of each

item of documentation in the form of a standard abstract. Each description

will include title, purpose, author, revision level, size, and key

words. The catalog will also include a lKey-Word-In-Context (KWIC)

listing for search purposes.

The LSA will maintain statistical information about the use of the

common language. Statistics will include the number of projects using

the language, number of translators, and number of computers for both

host and target. Reports from the field shall include information about

the detail use of the language and translators. The information will

include error studies, difficult to use constructs, amount of machine

code used and reasons why, and all proposals for super sets and upgrades.

These statistics will be published periodically as part of a comon'

language report which will be the responsibility of the HOLWG. This

report will include the present status and plans for the language.

All of this information will be made available to the comon language

community to ensure that all users and potential users are working with

accurate, current information.

10-1



A periodic language bulletin will be considered, possibly to be

placed on the ARPANET.

10-2



Section 11

Training Support

Initial training will be required for prograummers using the

language, developers of translators, and management. Preparation

of courses for each of the various levels will be required. Different

modes of training will also be required due to diverse locations,

schedules, and background of those requiring training.

11.1 Types of Training R~equired

11.1.1 Programmers Using the Coon Language

Training will be provided for all programmers who

will write programs in the common language. This training

must consider new as well as experienced programmers and

will consist of beginning, intermediate and advanced

levels. Refresher courses will also be provided.

Training will be required for language use as well

as tool use. Language aspects which help accomplish

project objectives such as reliability, efficient memory

usage, efficient Central Processor Usage, maintainability,

and stabidard styles should be taught.

Training aids will require manuals for programmers

familiar with other HOL's. For instance, the following

will be required:

1. Coon Language for Jovial Users



2. Common Language for CMS-2 Users

3. Common Language for TACPOL Users

4. Common Language f or SPL/I Users

11.1.2 Translator Developers

Training will be provided in the syntax and semantics

of the language for personnel developing translators.

11.1.3 Management of Projects Using the Common Language

The management of projects using the language will

require overview training for the language and its environ-

ment. Training in techniques which promote success in

project development should also be prepared.

11. 2 Training Modes

Methods of training will include the following.

1. Classroom Instruction

2. Video Tape Courses

3. Computer Terminal Teaching Sessions

4. Self-Instruction Manuals

Material for all of these methods will include liberal

use of programming examples with various levels of complexity

and will depict the required steps in arriving at a solution.

11-2



For the classroom sessions, teaching materials will be

required for conducting different levels of training. These

materials will aid in scheduling, teaching, and examination of

students. Charts for consistent training and class projects

should be included.

Materials shall be provided for teaching in languages

other than English.

11-3



Section 12

Project Management Aids

The purpose of this section is to state requirements for

project management aids which are necessary for the success of

projects using the common language. These aids consist of tools

and techniques which assist in the specification, designing,

building, validating and controlling of the software. The tools

and techniques are listed in previous sections. This section will

relate them to the phases of development.

Different aids are required for each type of activity in the

development process. These aids and necessary training in their

use are described below.

12.1 Requirements Definition and Tracking Aids

The first and most critical phase of a software project

is the specification of requirements. Management must have

software tools which allow the identification of all require-

ments and the tracing of requirements through the project in

order to ensure correct mappings onto programs. These tools

should also furnish information to judge the completeness and
consistency of the requirements and should build a data base

which flows through the other phases of the project.

A tool, such as the PSL/PSA, and techniques for testing

completeness, such as inspection/reviews, should be used.

12-1



12.2 Design Aids

The elements of the design phase consist of recognition

and understanding of the latest methods of designing reliable

software and the software tools to support their use.

These software tools should lead to a complete and consistent

mapping of the requirements onto a structure of programs.

The following tools and ideas should be employed in this

phase.

1. Top down development with data structure considerations

2. Explicit design guidelines and standards

3. Requirements tracing through the software structure

4. Planning for integration

5. Planning for change to design and code

6. Validation of each design step by reviews, walk-

through or simulation

12.3 Construction Aids

Construction aids consist of all the tools and techniques

required to build the software components which will implement

the requirements. A complete facility such as a Program

Development System or Software Factory should be considered to

support development.

The following aids should be available to asist in this

project phase.

12-2



1. Source entry and modification systems

2. Library control systems to store various versions of

programs and retain periodic versions as backup for

security purposes

3. Interpretive translation for quick development of

algorithms

4. Text editing capabilities with automatic indentation

and spacing to promote readability

5. Static test tools for tracing control paths and

performing symbolic executions

12.4 Integration Aids

Integration aids consist of all the tools and techniques

required to fit the software components together into a validated

system.

The following aids should be available to assist in thej

integration phase.

1. Top down development tools to allow entry of program

stubs and replacement by actual programs

2. Status reporting systems for tracking status of

programs and troubles

3. Test data generation methods for developing the

minimm number of cases for maxim coverage

4. Test status tools for identifying programs and

portions of programs that are not yet tested

12-3



12.5 Control Aids

Control aids consist of the tools and techniques which

allow project management to control all project resources:

dollars, people, computers, and lines of code.

The following aids should be available to assist project

management.

1. Cost accounting systems to track actual versus

budget cost.in a work breakdown structure

2. Schedule reporting systems

3. Configuration control systems which track configuration

levels and status of changes

4. Control over the use of language features (e.g.

GOTO's and recursion)

12-4

(A 41 ppr



Workshop on Environment & Control of DOD

Common High Order Language

University of California, Irvine
June 20- 22

LIST OF PARTICIPANTS

Capt. G. E. Anderson, MCTSSA, Camp Pendleton

Robert Anderson, The Rand Corporation

Robert Balzer, USC - Information Sciences Institute

Capt. Jim Bladen, USAF Armament Lab.

Kenneth L. Bowles, UC - San Diego

Ruven Brooks, UC - Irvine

Thomas E. Cheatham, Harvard University

Paul M. Cohen, Defense Communications Agency

Cdr. John D. Cooper, Chief of Navy Material

Steve Crocker, USC - Information Sciences Institute

Joe Cross, Sperry-Univac

Sam DiNitto, USAF-RADC

Mike Dyer, IBM Corporation

Patricia L. Eddy, Sperry-Univac

Peter J. Elzer, Institute for Defense Analyses

John W. Each, Sperry-Univac

Peggy Eastwood, McDonnel Douglas

Arthur Evans, Jr., Bolt, Beranek& Newman

Steve Fickas, UC - Irvine

Norm Finn, Rolm Corporation

Dr. David A. Fisher, Institutq fcr Defense Analyses



Page Two

Gene Fisher, Jet Propulsion Laboratory

Peter Freeman, SofTech, Inc.

Anthony Gargaro, Computer Science Corporation

Susan L. Gerhart, USC - Information Sciences Institute

Robert Glass, Boeing Aerospace Corporation

Harmut Huber, Naval Surface Weapons Center

Al Irvine, SofTech, Inc.

Rob Kling, UC - Irvine

John C. Knight, NASA Langley Research Center

Charles L. Lawson, Jet Propulsion Lab

Warren E. Loper, Naval Ocean Systems Center

David Loveman, Massachusetts Computer Associates

David C. Luckham, Stanford University

Neil Ludham, UC - Los Angeles

John Machado, Naval Electronics Systems

Clem McGowan, SofTech, Inc.

Jim Meehan, UC - Irvine

James Michner, Intermetrics

Duncan E. Morrill, Interstate Electronics Corporation

Robert Morris, Bell Laboratories

John Morison, R.S.R.E.

Mat Myszewski, Massachusetts Computer Associates

Eldred C. Nelson, TRW

Cmdr. Ron Ohlander, Naval Electronics Systems

James E. Prescott, IBM Corporation

Patricia Santoni, Naval Ocean Systems Center

Victor Schneider, The Aerospace Corporation



Page Three

John T. Shen, Naval Ocean Systems Center

Ann Marmor-Squires, Bolt, Beranek & Newman

Steve Squires, Harvard University

Thomas A. Standish, UC - Irvine

Henry G. Stuebing, Naval Air Development Center

Edward Taft, Xerox - PARC

Richard Taylor, Boeing Computer Services

Warren Teitelman, Xerox - PARC

Dennis Turner, US Army

Peter Wegner, Brown University

Lt. Col. William A. Whitaker, DARPA

Martin Wolfe, U.S. Army

Ray Young, Sperry-Univac

I" J


